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bstract

This paper describes a method that passively assesses basic walker-assisted gait characteristics using only force-moment measurements
rom the walker’s handles. The passively derived gait characteristics of 22 subjects were validated against motion capture gait analysis. The
orce-moment based heel initial contact detection algorithm have produced a high level of concordance with heel initial contacts detected by
human inspecting the heel marker data sets of the Vicon video capture system. The algorithm has demonstrated 97% sensitivity and 98%

pecificity with a narrow 95% confidence interval of ±1% during all experiments, which included five navigational scenarios.
Temporal error in detecting the instances of heel initial contacts were within 5.27 ± 3.66% of the overall stride time obtained from Vicon

hen the subjects walked in a straight line, whereas the toe-off instance estimates were within 5.18 ± 2.75% of the gait cycle. The errors in
etermining the duration of stride time, single support, and double support were within 5.86 ± 2.49%, 5.24 ± 2.29%, and 4.34 ± 2.13% of
he gait cycle respectively. The stride time estimated, using the method presented here, correlated well with stride time computations based

n visual inspection of Vicon’s data, Pearson correlation coefficient r = 0.86 for straight line segments. However, absolute errors were too
igh to estimate the single and double support phases with acceptable accuracy. The potential application of the instrumented walker and the
ethod presented here is longitudinal basic gait assessment that can be performed outside of the conventional gait labs.
2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Independent mobility is one of the most important factors
n maintaining quality of life for elders, and other clinical pop-
lations who need assistive devices such as walkers. Mobility
s crucial for performing the activities of daily living (ADLs),
s well as maintaining fitness and vitality [1]. Reduced quality
f life has been associated with factors indicative of reduced
obility such as the inability to ascend stairs, fatigue and

ocial activity. Longitudinal assessment of functionality of

obility aid users, both inside and outside the home, can

rovide clinicians with continuous measures of a person’s
unctional ability and activity levels. Moreover, functional

∗ Corresponding author. Tel.: +1 434 924 2265.
E-mail address: ma5x@virginia.edu (M. Alwan).
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ssessment in the user’s natural environment, i.e. outside the
linic and the gait lab, is useful for monitoring the effective-
ess of therapeutic interventions including surgeries, phar-
aceutical interventions, or physical therapy over extended

eriods of time.
Second only to the cane, walkers are used more often

han any other mobility aid [2], however, walker-assisted gait
as not been fully investigated. In several research projects
alkers have been instrumented for control purposes, such

s the inference of the intent of the walker’s user to imple-
ent control [3]. However, few researchers have attempted

o instrument a walker to assess the functionality of the

alker-dependent user. One of these attempts is the work
f Fast et al. [4] where strain gauges were mounted on all
our legs of a walker to record forces transmitted through
he walker’s frame in axial, frontal and sagittal orientations.
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he instrumented walker provided a better understanding of
oading and force distribution in clinical populations includ-
ng two primary modes of use for weight support and balance
nhancement, as well as a combination of these two modes. In
nother study [5], a pick-up walker instrumented with strain
auges was developed to measure the six-axis resultant force-
oments applied by the user and a finite-element model of

he walker was developed to analyze the loading patterns [5].
hen et al. [6] instrumented a cane to understand the under-

ying biomechanics of temporal stride and force in people
ith hemiplegic stroke during cane-assisted walking. The

nstrumented cane data could be useful in assessing the nature
f cane assistance and in planning therapeutic strategies for
eople with stroke [6]. None of these studies explored the
otential use of the measured force and moments to passively
erive basic gait characteristics.

Finally, there is abundant literature on attempts to derive
ait characteristics by instrumenting the subject using
ccelerometers and/or gyroscopes, primarily for the purpose
f controlling functional electrical stimulators (FES) [7–11];
owever, these methods rely on the user’s compliance in
earing the device and are hence not passive.
This paper builds on previous research performed at the

niversity of Virginia in using instrumented wheeled walk-
rs to develop a human/machine shared-control system that
ssists users by increasing the safety and speed of their daily
ravel [3,12,13]. Here we present the use of a walker instru-
ented with force-moment sensors to passively derive basic

ait characteristics. It is hypothesized that the forces and
oments recorded from the walker’s handles will have cyclic

hanges reflecting the gait cycle, and that from these changes
asic gait characteristics such as step count, pace, and stride
ime and possibly gait phases including double support, as
ell as right and left single support could be correctly iden-

ified.
Wheeled walkers can be easily augmented with simple and

elatively low-cost instrumentation technologies to provide a
ide range of functionality and gait characteristics. Such a
evice would provide in situ gait analysis technology that
ay overcome the problems that plague routine clinical use

f gait analysis such as the manner in which gait laboratories
re organized, tests are performed, and reports are generated,
s well as the length of time and costs required for performing
ests and interpreting the results [14]. However, the device is
ot intended to be an alternative for gait analysis laboratories,
hose aim is to perform a global and accurate evaluation of

he different components of movement (kinematic, kinetic,
MG, etc.), but rather a tool for the longitudinal evaluation
f basic temporal features of gait in the field.

. Methodology
.1. Walker and data acquisition systems

The walker is a standard Sprint® three-wheel rollator
Invacare, OH, USA), augmented with two 6-DoF load cells

2

p

ig. 1. The load cell for measurement of user forces and moments applied
o the walker’s handle.

S120-160 (ATI Industrial Automation, NC, USA). The
alker’s handles were sawn and the sensors were mounted

n-line between the handles and the walker’s frame, as shown
n Fig. 1. The sensors provide the load/moment transfers
etween the walker and the user. The force-moment signals
ere sampled at 360 Hz using a laptop personal computer
ounted on the walker and equipped with two PCMCIA data

cquisition cards. The motion model (walker/user) was cap-
ured using reflective markers and the Vicon 612® motion
nalysis system (Vicon Motion Systems, Oxford, UK) con-
ected to six 120 Hz video cameras [15]. The Vicon system
nd the force-moment data acquisition computer were syn-
hronized using a synchronization channel between the two
ystems. The Vicon system can create a 3D motion model
y using the positions in the (x–y–z) space of particular real
oints (markers) placed on the human and the walker frame.
n this model, seven markers represented the walker and four
ere placed on the toes and heels of the participant. The
icon motion capture system was chosen as a reference in

he experiments, since the experiments also aimed at captur-
ng the trajectory of the walker as well as the user’s forces
nd moments in different scenarios in attempt to understand
he User’s Navigational Intent (see Ref. [3]). The global coor-
inate system of Vicon is aligned with the local coordinate
ystem of the force-moment measurement system, which is
ied to the walker’s frame, at the beginning of every exper-
ment. The vertical component of the trajectory of the heel
calcaneous) and toe (metatarsal) markers were used to deter-
ine the Vicon heel initial contact and toe-off instances.
A flat amplitude response IIR low-pass filter with a cut-off

requency of 3 Hz is used in filtering the force-moment data.
o eliminate the phase shift caused by filtering, a non-causal
i-directional filter was implemented. This filter performs
ero-phase shift digital filtering by processing the force-
oment data in both the forward and reverse directions [16].
.2. Subjects

Experiments were conducted in the gait lab on a total of 22
articipants, 15 of whom were older adults (above 65). Sub-
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ects had a mean age of 64.6 ± 15.2 years (minimum = 27,
aximum = 87 years), a mean height of 169.1 ± 8.1 cm (min-

mum = 158, maximum = 183 cm), and a mean weight of
5.7 ± 9.2 kg (minimum = 59.4, maximum = 95.2 kg). None
f the subjects depended on a walker or presented any loco-
otion disabilities. All subjects reviewed the experimental

rotocol approved by the Institutional Review Board (IRB)
nd signed an informed consent prior to participation.

.3. Experimental procedure

Each user performed a total of 15 experiments emulating
navigational scenarios designed to determine navigational

ntent from measured forces and moments recorded at the
andles of the walker; a pre-experiment trial was aimed at
alibrating the data capture systems. The navigational sce-
arios included walking in a straight line, and turning right
nd left at two different angles on each side. Each naviga-
ional scenario was performed three times.

.4. Observed force-moment patterns, and detection
lgorithms

Careful examination of all force-moment channels,
xpressed in the local coordinate system, against the right
nd left heel markers’ data revealed a pattern indicating a
orrelation between the forces-moments in the direction nor-
al to the ground, FZ, the corresponding moment around the

xis parallel to the ground and perpendicular to the direction
f travel, MX, and the vertical component of the trajectory of
he heel markers. Peaks in FZ and the corresponding moment

X signals coincided with heel initial contact; heel initial
ontacts were identified as the valleys in the vertical compo-
ent of the trajectory traces of the heel markers. However,
he pattern was clearer in the moment signal due to the lever
ffect of the handles’ length, so we chose to use the right
nd left MX moment signals. Right and left MX signals show
wo peaks, one with higher amplitude coinciding with heel
nitial contact of the corresponding foot, the other with lower
mplitude coinciding with heel initial contact of the opposite
oot; these higher and lower peaks alternate repetitively. This
attern reflects the lateral sway motion of the upper body
f the walker’s user during ambulation, which can be mod-
led as an inverted pendulum, and the associated pattern of
oading exerted on the walker frame. The load is transmitted
hrough the walker’s rigid frame and could be measured by
round reaction forces. This pattern in the force-moment sig-
als was exploited in developing a peak detection algorithm
o identify right and left heel initial contacts from the right and
eft MX signals. A simple off-line peak detection algorithm
as sufficient to produce encouraging preliminary results;

hese were reported in Ref. [17]. Later, more sophisticated

ual-step peak detection was implemented. The first step of
he peak detection algorithm examines data from the right
nd left MX signal to estimate the approximate time of each
eel initial contact. This peak detection algorithm has pro-
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uced better results when applied to the signal representing
he summation of the right and left moment signals around
he X-axis (MX,left + MX,right); this is due to the fact that peaks
orresponding to heel initial contacts were enhanced because
hey were present in each one of the two added signals, unlike
purious peaks, which could be due to noise. The second step
f the algorithm detects the actual timing of the heel initial
ontacts by analyzing the signal MX,left and MX,right inde-
endently. The estimated heel initial contact time, computed
rom first step, is exploited to create relatively narrow time
indows centered at the estimated heel initial contact times.
ll trials from eight randomly selected subjects were used

o determine the best size of the window; the optimization
as based on selecting a window width that did not miss

ny heel initial contact and that minimized the error between
he time of heel initial contacts detected by the peak detec-
ion algorithm and the heel initial contact times provided by
uman detection on Vicon’s data. The results presented below
re computed using only one size window for all subject. The
ingle window size demonstrates the robustness over the sub-
ect population tested. Better results could be obtained if the
lgorithm utilized a user-specific window. The peak detection
lgorithm analyzes the signal in these windows, as shown in
ig. 2, to compute the accurate heel initial contact instances.
he window method allows the identification of heel initial
ontacts more accurately (i.e. minimizes the absolute error
etween actual heel initial contacts and peaks identified in
he moment signal), but it may result in missing some peaks
n each signal. To determine whether the detected peak cor-
esponded to the right or left heel initial contact, the original
ight and left MX signals were examined as explained earlier.

The off-line peak detection algorithm described above was
pplied as a post-processing analysis to all trial data sets. The
lgorithm scans the MX data recorded for the whole trial to
nd the highest peak. Once this peak is detected, the algo-
ithm starts to iteratively search for the remaining peaks after
kipping a portion of the data that reflects a pre-determined
ead-time to avoid the detection of false peaks in the undulat-
ng MX signal that do not coincide with heel initial contacts.
he algorithm stops when the amplitude of the current peak

n sum of moments (MX,left + MX,right) signal falls under a
hreshold of 1 Nm. This algorithm has demonstrated robust-
ess on all our trial data sets. However, the algorithm is not
uited for on-line processing.

Similarly, the data sets exhibited a pattern between the
orward propulsion forces applied by the user, FY, and the
oe-off event from the right and left toe markers’ data cap-
ured by Vicon; toe-off events were identified as the start of
significant rise in the trajectory traces of the toe markers.
or some users the toe-off events coincide with the start of an
ppreciable increase in the forward pushing force on the han-
le. Alternatively, the toe-off times can be estimated using a

0% rule based on the detected heel initial contact event. Two
uccessive heel initial contacts, measured for the same foot,
re used to compute the stride (i.e. the duration of the gait
ycle). Using a normalized gait diagram [18], we can com-
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ig. 2. Heel initial contact detection algorithm—left and right initial contac
n the moment signal marked by circles coincide with valleys in the corresp
how relation to the heel initial contact instance.

ute an estimate of the toe-off event by adding 60% of the
tride to the time of the first detected heel contact. Repeating
he process, we can obtain an estimate of all the subsequent
oe-off events.

.5. Statistical methods

Two by two contingency table and the chi-square statistics
ere used to evaluate the concordance between the heel initial

ontact detection and the toe-off estimation algorithms, and
eel initial contact and toe-off events detected by a human
bserver inspecting Vicon’s motion data, respectively. Errors
n the detection time between the algorithm and the Vicon
ased detection were computed for heel initial contact and
oe-off events, stride time, as well as single and double sup-
ort gait phases.

. Results

.1. Heel initial contact detection results

Fig. 3 shows typical graphs of the left (top) and right
bottom) heel marker data and the moment MX exerted on

he corresponding handle from one of the subjects. Notice
ow peaks in the moment signal, marked by circles, coin-
ide with valleys in the corresponding heel marker signal;
ertical lines are drawn from these peaks to show relation

o
n
t
r

btained in windows centered on estimated heel initial contact times. Peaks
heel marker’s vertical signal; vertical lines are drawn from these peaks to

o the heel initial contact instance. Similarly, peaks in the
oment signal, marked by +, coincide with valleys in the

pposite heel marker signal. The data set selected is trial no.
of subject no. 7, and it was selected to show the robustness
f the peak detection method despite the small variations in
he MX moment compared to other trial data sets from the
ame subject, as well as data sets from other subjects.

Fig. 4 shows the worst case where the heel initial contact
etection algorithm performed poorly. The data set presented
s from subject no. 7 performing a sharp (60◦) turn to the left.
he algorithm missed the third heel initial contact of the left

oot.
The accuracy of the heel initial contact detection algorithm

as established on a step-by-step basis, through comparison
o the count of steps detected by human observer inspecting
he heel marker signals from the Vicon system, using two-
y-two contingency table and the chi-square statistics. Data
ere considered as nominal. The two-by-two tables were

onstructed in the context of a detection algorithm as shown
n Table 1. Heel initial contacts detected by the algorithm and
bserved on the Vicon heel marker signals within the same
tep time window was scored as a hit or a true positive. If
he algorithm did not report an observed heel initial contact
ithin Vicon’s step time window, a miss or a false negative

ccurred. Heel initial contacts detected by the algorithm, but
ot observed on the Vicon data was scored as a false posi-
ive detection. Finally, if neither the algorithm nor the Vicon
eported a heel initial contact, a true negative was recorded.
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Fig. 3. Peaks in MX signals coinciding with heel initial contacts (valleys) obtained from the heel marker’s vertical signals. Peaks in the moment signal, marked
by circles, coincide with valleys in the corresponding heel marker signal; vertical lines are drawn from these peaks to show relation to the heel initial contact
instance. Similarly, peaks in the moment signal, marked by ‘+’, coincide with valleys in the opposite heel marker signal.

Fig. 4. Worst case performance of the heel initial contact detection algorithm—the third left heel initial contact (top) is missed.
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Table 1
Two-by-two contingency table used in evaluating the accuracy of the detec-
tion algorithm

Vicon Algorithm

Detected Not detected

Heel initial contact Hit (true positive) Miss (false negative)
No heel initial contact False detection

(false positive)
True negative

Table 2
The p-value, sensitivity, and specificity of the heel initial contact detection
algorithm on a step-by-step basis (together with their 95% confidence inter-
val (CI)) obtained using the chi-square test

p Sensitivity (95% CI) Specificity (95% CI)

Go straight <0.0001 1 (0.99–1.00) 0.97 (0.95–0.99)
30◦ left turn <0.0001 0.96 (0.93–0.98) 0.93 (0.89–0.96)
30◦ right turn <0.0001 0.96 (0.93–0.98) 0.96 (0.93–0.98)
60◦ left turn <0.0001 0.97 (0.95–0.99) 1 (0.99–1.00)
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A total of 1577 steps from all trials of all subjects were
nalyzed and the results, summarized in Table 2, show that
he algorithm has a high sensitivity and specificity. Sensitivity
robabilistically measures the algorithm’s ability to correctly
etect an observed step, or true positives, where as specificity
haracterizes the algorithms ability to correctly identify true
egatives. The algorithm detected the heels’ initial contact
ith sensitivity ranging from 96% to 100% and specificity

anging from 93% to 100%; the results were statistically sig-
ificant for all navigational scenarios tested.

Further, correlation coefficients and the errors between the
eel initial contact instances obtained from visual inspection
f Vicon data and those derived from moment data for all
rials are presented in Table 3. Errors are presented both as
n absolute difference and as a percentage of the duration
f the overall gait cycle measured from Vicon’s data. The
inimum correlation coefficient for the heels’ initial contact

etween our algorithm and the inspection of Vicon’s data was
9.63%, while the maximum temporal error in the detection
f these instances was 95.08 ± 79.46 ms.

.2. Toe-off detection results

The toe-off detection algorithm did not perform as well as
he heel initial contact detection algorithm on all the subjects.
he algorithm did not have reproducible results on all data
ets from all the subjects, and had large errors in the toe-off
vent detection. Subject no. 7 in particular challenged the toe-
ff detection algorithm possibly due to lower changes in the
orces exerted by this individual. A more sophisticated algo-
ithm may allow the detection of these instances even with

mall force and moment variations. However, in the current
mplementation of the algorithm, better results were obtained
sing the toe-off estimation method presented in the method-
logy section. Ta
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Fig. 5. Toe-off instances vs. the toe-off

.3. Toe-off estimation results

As an alternative to the toe-off detection algorithm, the
oe-off times were estimated using a 60% rule based on the
etected heel initial contact event. Fig. 5 graphically presents
he results of toe-off estimation using the 60% estimation rule

entioned above.
Table 4 summarizes the errors between the toe-off

nstances obtained from visual inspection of Vicon data and
hose estimated using the 60% rule for all trials. Errors are
resented both as an absolute value and as a percentage of the
uration of the overall gait cycle measured from Vicon’s data.
he minimum correlation coefficient for the toe-off between

he 60% estimation rule and the inspection of Vicon’s data
as 99.59%, while the maximum temporal error in the detec-

ion of these instances was 103.56 ± 83.73 ms.

.4. Gait cycle, double support, and right and left single
upport results

Finally, we computed the stride time, double support, as
ell as the right and left single support phases based on our
eel initial contact detection algorithm and our toe-off esti-
ation rule, and compared the results to those obtained from

he heel initial contact and toe-off instances obtained directly
rom visual inspection of Vicon’s data. Correlation coeffi-

ients between the two methods, percent errors, relative to the
uration of the overall gait cycle measured from Vicon’s data,
s well as the absolute errors in milliseconds, are tabulated
n Table 5. The minimum correlation coefficient between

(
A
c
f

e based on the 60% of stride time rule.

ait phases derived from the force-moment data compared
o Vicon’s motion capture data was that for the double sup-
ort time, 17.12%, while the maximum temporal error was
or the stride time during sharp turns 110.61 ± 69.43 ms.

. Discussion

.1. Errors and their possible sources

The heel initial contact detection algorithm from force-
oment data have produced a high level of concordance
ith heel initial contacts detected by a human inspecting

he heel marker data sets of the Vicon video capture sys-
em. The algorithm has demonstrated 97% sensitivity and
8% specificity with a narrow 95% confidence interval of
1% during all experiments, which included five naviga-

ional scenarios. Temporal error in detecting the instances
f heel initial contacts was within 74.74 ± 54.88 ms, which
s equivalent to 6.19 ± 4.91% of the overall stride time
btained from Vicon, whereas the toe-off instance estima-
ion was within 70.97 ± 61.55 ms, or 5.78 ± 5.38% of the
ait cycle, for all navigational scenarios tested. The errors in
etermining the duration of stride time, single support, and
ouble support were within 90.85 ± 68.5 ms (7.29 ± 5.27%),
7.48 ± 36.30 ms (6.36 ± 2.98%), and 60.77 ± 24.37 ms

4.98 ± 2.09%), respectively, for all navigational scenarios.
bsolute error in stride duration was acceptable (Pearson

orrelation coefficient with Vicon’s stride duration ranged
rom r = 0.53 to r = 0.86). However, absolute errors were too
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Table 4
Pearson correlations coefficients (r) and mean of the absolute errors in toe-off instances estimation between Vicon based inspection and the force-moment based algorithm (presented as time difference, in
milliseconds, between the instances of initial contact identified on Vicon and the corresponding initial contacts detected by our algorithm, as well as the percentage of this time difference to the corresponding
stride time obtained from Vicon)

Go straight 30◦ left turn 30◦ right turn 60◦ left turn 60◦ right turn

Right toe 0.9992, 4.1 ± 2.75% (53.54 ± 42.60 ms) 0.9991, 4.57 ± 4.53% (57.61 ± 61.09 ms) 0.9959, 6.26 ± 7.71% (70.67 ± 66.32 ms) 0.9971, 8.22 ± 6.18% (103.56 ± 83.73ms) 0.9983, 6.05 ± 3.22% (74.65 ± 40.25 ms)
Left toe 0.9985, 5.18 ± 2.75% (66.31 ± 39.29 ms) 0.9984, 5.01 ± 2.49% (62.27 ± 36.01 ms) 0.9962, 6.07 ± 5.85% (65.69 ± 44.94 ms) 0.9976, 7.37 ± 7.14% (95.17 ± 97.96 ms) 0.9987, 5.34 ± 2.52% (66.11 ± 33.55 ms)

Table 5
Pearson correlation coefficients (r) and mean of the absolute errors in stride, double support and left and right single support between Vicon based inspection and the force-moment based algorithm (presented
as time difference, in milliseconds, between the instances of initial contact identified on Vicon and the corresponding initial contacts detected by our algorithm, as well as the percentage of this time difference
to the corresponding stride time obtained from Vicon)

Stride Double support Right single support Left single support

Go straight 0.8568, 5.86 ± 2.49% (73.19 ± 34.58 ms) 0.1712*, 4.34 ± 2.10% (54.56 ± 24.65 ms) 0.3995, 5.24 ± 2.29% (66.52 ± 29.53 ms) 0.4171, 5.38 ± 2.31% (67.23 ± 30.01 ms)
30◦ left turn 0.7794, 7.50 ± 6.70% (91.79 ± 82.40 ms) 0.1823*, 5.92 ± 2.32% (70.28 ± 24.23ms) 0.3524, 6.58 ± 2.81% (79.98 ± 33.17 ms) 0.3134, 7.08 ± 2.97% (86.01 ± 38.91 ms)
30◦ right turn 0.5286, 6.21 ± 5.21% (73.36 ± 57.21 ms) 0.2620, 5.63 ± 2.08% (67.12 ± 22.72 ms) 0.4663, 5.68 ± 2.84% (66.56 ± 30.73 ms) 0.4323, 6.13 ± 2.83% (72.21 ± 28.06 ms)
60◦ left turn 0.7812, 8.34 ± 5.98% (106.48 ± 83.00 ms) 0.2215, 4.95 ± 2.06% (62.56 ± 27.69 ms) 0.3329, 6.27 ± 2.73% (79.65 ± 35.27 ms) 0.3354, 6.67 ± 3.29% (82.60 ± 41.79 ms)
60◦ right turn 0.8076, 8.26 ± 5.04% (110.61 ± 69.43 ms) 0.3431, 4.85 ± 1.95% (60.44 ± 23.36 ms) 0.5302, 6.94 ± 3.11% (85.66 ± 35.89 ms) 0.4507, 6.99 ± 3.37% (86.35 ± 41.11 ms)

* Not statistically significant (p > 0.05).
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igh to estimate the single and double support phases with
cceptable accuracy. This is due to the fact that double and
ingle support phases are short, approximately 10% of the
ait cycle for the double support, which makes the duration
f these phases more sensitive to errors in the detection of
he heel initial contact instance or the toe-off instance on the
pposite foot. Unlike the percentage error reported, the abso-
ute errors in milliseconds were not normalized by the gait
ycle time. The errors presented above are based solely on
he determination of the heel initial contact and toe-off times
rom visual inspection of the Vicon’s motion capture data by
human observer. These reference instances themselves are
rone to errors comparable to the duration of the double sup-
ort time, 5–10% of the gait cycle [19]. It is clear from the
rror tables that the error of heel initial contact detection, toe-
ff time estimation, and the computed stride time, as well as
he times of the single and double support phases, generally
end to increase when the walker’s user changes direction.
his is expected since the forces and moments exerted on the
alker’s handles include a component reflecting the user’s
esire to change the direction of the walker, in addition to
component reflecting the user’s increased need for support
hile performing a turn (see Ref. [2]).
Nevertheless, if we limit gait characterization to data

ollected during straight line segments (through tracking
he orientation of the steering wheel using an encoder),
e can reduce the errors, and standard deviation of the

rrors in particular, appreciably. In the case of walking in a
traight line, the temporal error in detecting the instances of
eel initial contacts were within 67.26 ± 50.38 ms, which is
quivalent to 5.27 ± 3.66% of the overall stride time obtained
rom Vicon, whereas the toe-off instance estimation were
ithin 66.31 ± 39.29 ms, or 5.18 ± 2.75% of the gait cycle.
he errors in determining the duration of stride time, single
upport, and double support were within 73.19 ± 34.58 ms
5.86 ± 2.49%), 66.52 ± 29.53 ms (5.24 ± 2.29%), and
4.56 ± 24.65 ms (4.34 ± 2.13%), respectively. The stride
ime estimated using the method presented here correlated
ell with stride time computations based on visual inspec-

ion of Vicon’s data, Pearson correlation coefficient r = 0.86
or straight line segments.

The accuracy of our results is comparable to that obtained
y Karcnik [19]. In the above mentioned study a simple, fast
nd straightforward method was developed to automatically
erive foot-floor contact information from tracking motion
nalysis system markers attached to the shoes of the subjects.
he system required an accurate calibration of the motion
nalysis system. However, the method does not obviate the
eed for the motion capture data [19].

.2. Limitations
The 60% rule of the gait for toe-off estimation is applicable
o normal gait of able bodied subjects on level grounds. How-
ver, for patient populations with abnormal gait pathologies,
r for inclined ramps, this value may not be applicable. On

s
t
d
v

& Physics 29 (2007) 380–389

he other hand, the peak detection algorithm presented here is
ot suited for on-line procession. Hence, the peak detection
lgorithm needs further modifications to suit on-line process-
ng.

Similarly, the non-causal digital filter used, as described
n Section 3, is suitable for off-line processing. Nonetheless,
n-line gait characterization, necessitates substituting the bi-
irectional filter with a causal filter with minimal phase shift
r at least linear phase response with the minimal order nec-
ssary to guarantee the on-line processing speed. FIR filters
ave the linear phase shift characteristics, but FIR filters have
n order four times that of the corresponding IIR filter with
he same complexity [20]. Meanwhile, the Butterworth IIR
lter has minimal phase shift over the filter’s band pass when
ompared to other conventional filters [21]. When designed
roperly, the magnitude response of the filter is flat and the
hase response is approximately linear in the pass-band. With
hese characteristics and lower order than the corresponding
IR filter, a high order Butterworth filter can be implemented.

. Conclusion and future work

We can detect heel initial contacts of left and right foot
rom forces-moments exerted on walker handles with 97%
ensitivity and 98% specificity (with a narrow 95% confi-
ence interval of ±1%) compared to a human rater inspecting
eel initial contact data of the Vicon motion capture system.
ased on heel initial contact detection, and toe-off time esti-
ation, we could identify and estimate the duration of strides
ith acceptable accuracy, less than 6% of the overall stride

ime, especially when the subjects walked in a straight line.
he significance is the potential ability to assess gait charac-

eristics passively outside the lab. Additional sensors on the
alker, such as incremental wheel encoders, would allow the
erivation of other gait characteristics, such step and stride
engths, as well as average walking velocity. Consequently,
he instrumented walker can be used to assist in clinical gait
nalysis. Since the walker is small and portable, it may allow
ertain gait analyses to be done longitudinally “in the field”,
oth in the home and out in the community.

A new peak detection algorithm is currently under devel-
pment; the algorithm uses step lengths history (computed
rom previous heel initial contacts instances) to adapt the
idth of the window for each subject and for each estimated

nitial contact times. A similar data history based approach
ill be adopted to adapt the toe-off estimation and detection
ethods. The history-based peak detection and toe-off esti-
ation algorithms may allow the adaptation of the method to

ater for abnormal gait pathologies and locomotion disabil-
ties and will hence require validation on a different subject
opulation. We also intend to explore the minimum phase

hift Butterworth IIR filtering for the on-line gait charac-
erization method. The enhanced future heel initial contact
etection and toe-off detection/estimation algorithms will be
alidated against methods that would allow the detection of
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eel initial contact and toe-off more accurately; such methods
ay involve the use of heel/toe switches or pressure-sensitive

nsole inserts in the future. These issues and enhancements
ill be taken into consideration in future studies that will be

onducted with subject populations exhibiting gait anoma-
ies.
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