Table of Contents

В.	Base	Tool C	hanger	B-3
QC	-210	Series-	-Robotic Tool Changer	B-3
1.	Prod	duct Ov	verview	B-3
	1.1	Maste	r Plate Assembly	B-4
	1.2	Tool F	Plate Assembly	B-5
	1.3	Option	nal Modules	B-5
2.	Inst	allation	1	B-6
	2.1	Maste	r Interface	B-7
	2.2	Maste	r Plate Installation	B-8
	2.3	Maste	r Plate Removal	B-8
	2.4	Tool I	nterface	B-9
	2.5	Tool F	Plate Installation (includes Bolt-Down Plate)	B-10
	2.6	Tool F	Plate Removal (includes Bolt-Down Plate)	B-11
	2.7	Pneur	natic Requirements	B-12
		2.7.1	Valve Requirements for Air Adapter Modules	B-12
	2.8	Electr	ical Connections	B-13
		2.8.1	PNP Type Lock, Unlock and RTL Sensors (-SM, -SR, -SL, -ST sensor designated)	ions) .B-13
		2.8.2	NPN Type Lock, Unlock and RTL Sensors (-SP, -SU sensor designations)	B-13
3.	Ope	ration .		B-14
	3.1	Condi	itions for Coupling	B-15
	3.2	Fail-Safe Operation		
	3.3	Conditions for Uncoupling		B-17
	3.4	Tool le	dentification	B-17
	3.5	Tool S	Storage Considerations	B-18
4.	Maiı	ntenan	ce	B-19
	4.1	Preve	ntive Maintenance	B-19
	4.2	Cleaning and Lubrication of the Locking Mechanism and Alignment Pins		B-20
	4.3	Pin Block Inspection and Cleaning		
5 .	Trou	Troubleshooting and Service Procedures		
	5.1	Troub	leshooting Procedures	B-23
	5.2	Servi	ce Procedures	B-24
		5.2.1	Sensor Replacement Procedures	B- 24
		5.2.2	V-ring Seal Replacement	B-34
		5.2.3	Alignment Pin Replacement	B-34

6 .	Serviceable Parts				
	6.1	Models 9121-210xM-0-0-0-S0	B-36		
	6.2	Models 9121-210xM-0-0-0-SL	B-37		
	6.3	Models 9121-210xM-0-0-0-SM, 9121-210xM-0-0-0-SP and 9121-210xM-0-0-0-SR	B-38		
	6.4	Models 9121-210xM-0-0-0-ST and 9121-210xM-0-0-0-SU	B-39		
	6.5	Standard Tool Plate	B-40		
	6.6	Bolt-Down Tool Plate	B-41		
7 .	Spe	cifications	B-42		
8.	Dra	wings	B-43		
	8.1	QC-210 Tool Changer	B-43		
	8.2	Bolt-Down Tool Plate	B-46		

B. Base Tool Changer

QC-210 Series—Robotic Tool Changer

1. Product Overview

ATI Tool Changers enhance the versatility of a robot by enabling the use of multiple customer tools, such as: grippers, vacuum cup tooling, pneumatic and electric motors, weld guns, and more.

The Tool Changer consists of a Master plate, which is attached to the robot arm, and a Tool plate, which is attached to customer tooling. When the robot picks up the customer tooling, a pneumatically-driven locking mechanism couples the two plates. The patented, fail-safe locking mechanism utilizes a multi-tapered cam with ball locking technology to ensure the Tool Changer does not uncouple if air pressure falls below 60 psi (4.1 bar) during operation.

The robot can be programmed to select the desired customer tooling by coupling the Master plate to the Tool plate. Electricity, fluid, and other forces of energy transfer to the customer tooling through optional modules that are attached to the Master and Tool plates. Refer to the ATI website for compatible modules or contact an ATI sales representative for more details.

For the most current product information and specifications on the QC-210 Series of Tool Changers, please click the following link: http://www.ati-ia.com/products/toolchanger/QC.aspx?ID=QC-210

1.1 Master Plate Assembly

The Master plate assembly includes the following features:

- An anodized aluminum body
- A hardened stainless steel locking mechanism (a cam, male coupling, and chrome steel ball bearings)
- Hardened steel alignment pins that mate with bushings on the Tool plate
- (4) flats for mounting optional modules (Flat A is dedicated for mounting an air adapter or a valve adapter and control/signal module combination; Flats B, C, and D are for optional modules)
- Proximity sensor assemblies used to verify the lock/unlock position of the piston and cam
- Proximity sensors used to verify Tool plate presence when coupled
- A mounting pattern for a robot arm or a robot interface plate
- Routing channels for the RTL, Lock, and Unlock sensor cables

Extreme pressure grease is applied to the cam, male coupling, ball bearings, and pins to enhance performance and maximize the life of the Master plate.

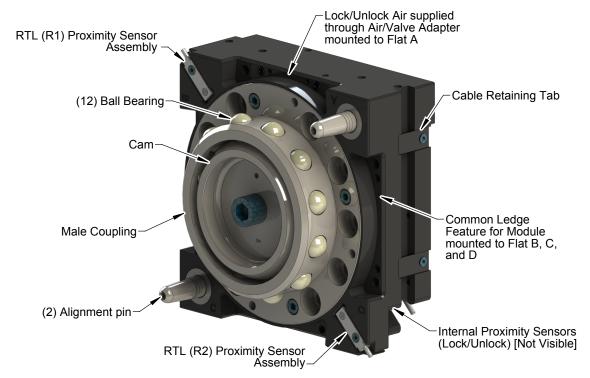


Figure 1.1—Master Plate Assembly

1.2 Tool Plate Assembly

The Tool plate assembly includes the following features:

- An anodized aluminum body
- A hardened stainless steel bearing race
- Alignment bushings that mate with pins on the Master plate
- (4) flats for mounting optional modules. Flat A requires a tool adapter assembly that is compatible with the air or valve adapter used on the Master Plate. Flats B, C, and D are for optional modules
- Ferrous metal proximity sensor targets
- A mounting pattern for customer tooling or a tooling interface plate

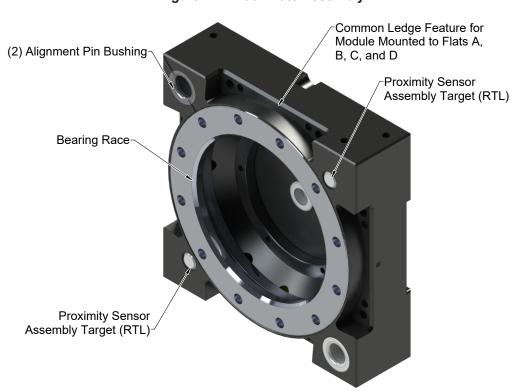


Figure 1.2—Tool Plate Assembly

1.3 Optional Modules

The optional modules are mounted to the Master and Tool plate using a common ledge mounting feature and pass utilities to customer tooling.

For assistance in the choosing the right modules for your particular application, visit our website (http://www.ati-ia.com/products/toolchanger/QC.aspx?ID=QC-210) to see what is available or contact an ATI sales representative.

2. Installation

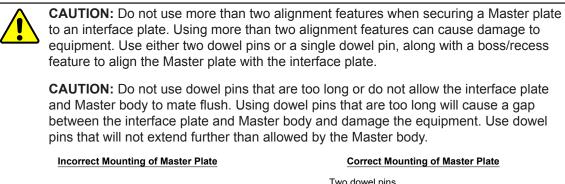
All fasteners used to mount the Tool Changer to the robot and to customer's tooling should be tightened to a torque value as indicated. Refer to *Table 2.1*. **Furthermore, removable (blue) Loctite 242 must be used on these fasteners.** *Table 2.1* **contains recommended values based on the engineering standards.**

WARNING: Do not perform maintenance or repair(s) on the Tool Changer or modules unless the Tool is safely supported or placed in the tool stand, all energized circuits (for example: electrical, air, water, etc.) are turned off, pressurized connections are purged and power is discharged from circuits in accordance with the customer specific safety practices and policies. Injury or equipment damage can occur with the Tool not placed and energized circuits on. Place the Tool in the tool stand, turn off and discharge all energized circuits, purge all pressurized connections, and verify all circuits are de-energized before performing maintenance or repair(s) on the Tool Changer or modules.

WARNING: Do not use lock washers under the head of the mounting fasteners or allow the mounting fasteners to protrude above the mating surfaces of the Master and Tool plates. Allowing fasteners to protrude above the mating surface will create a gap between the Master and Tool plates and not allow the locking mechanism to fully engage, this can cause damage to equipment or personal injury. The mounting fasteners must be flush or below the mating surfaces of the Master and Tool plates.

Head of Mounting Fastener Must Be Flush or-Below Mating Surface. (Do Not Use Lock Washer under Head of Mounting Fastener.)

CAUTION: Thread locker applied to fasteners must not be used more than once. Fasteners might become loose and cause equipment damage. Always apply new thread locker when reusing fasteners.



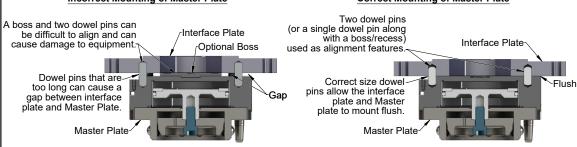

CAUTION: Do not use fasteners that exceed the thread depth in the Tool Changer. Refer to *Section 8—Drawings* for details on the mounting hole thread depth. Secure the Tool Changer with the proper length fasteners. This is true for both robot and tool interfaces.

Table 2.1—Fastener Size, Class, and Torque Specifications					
Mounting Conditions	Fastener Size and Property Class	Recommended Torque			
Master plate to Interface plate and Interface plate to Robot (6061-T6 aluminum) Minimum thread engagement of 0.59" (15 mm) [1.5X fastener Ø]. Confirm available engagement with Robot Manufacturer	M10-1.5 Class 12.9	38 ft-lbs (52 Nm)			
Interface plate to Robot (steel; USS ≥ 90KSI) Minimum thread engagement of 0.39" (10 mm) [1.0X fastener Ø]. Confirm available engagement with Robot Manufacturer	M10-1.5 Class 12.9	55 ft-lbs (75 Nm)			
Tool plate (aluminum) to Tool interface plate (aluminum) Minimum thread engagement of 0.47" (12 mm) [1.5X fastener Ø].	M8-1.25 Class 12.9	20 ft-lbs (27 Nm)			
Tool interface plate (aluminum) to Tool plate (aluminum) Minimum thread engagement of 0.59" (15 mm) [1.5X fastener Ø].	M10-1.5 Class 12.9	38 ft-lbs (52 Nm)			
Tool interface plate (aluminum) to Tool plate (aluminum) Minimum thread engagement of 0.71" (18 mm) [1.5X fastener Ø].	M12-1.75 Class 12.9	70 ft-lbs (94 Nm)			

2.1 Master Interface

The Master plate is typically attached to the robot arm. An interface plate can adapt the Master plate to a specific robot arm. Alignment features (dowel holes and bosses) accurately position and bolt holes secure the Master plate to the robot arm or an interface plate. Custom interface plates are available from ATI upon request (refer to the drawings for technical information on mounting features.)

If the customer chooses to design and build an interface plate, consider the following points:

- The interface plate should include bolt holes for mounting and either two dowel pins or a dowel pin and a boss for accurate positioning on the robot and Master plate. The dowel and boss features prevent unwanted rotation. Refer to the robot manual for robot mounting features.
- The thickness of the interface plate must be sufficient to provide the necessary thread engagement for the mounting bolts.
- Dowel pins must not extend out from the surface of the interface plate farther than the depth of the dowel holes in the Master plate.
- If a boss is used on the Master plate, a recess of proper depth and diameter must be machined into the interface plate to correspond with the boss on the Master plate.
- Mounting bolts that are too long can create a gap between the interface plate and the Master plate, which can damage equipment.
- The interface plate must provide rigid mounting to the Master plate.
- The interface plate design must account for clearances required for Tool Changer module attachments and accessories.

2.2 Master Plate Installation

Tools required: 8 mm hex key, torque wrench Supplies required: Clean rag, Loctite® 242

- 1. Wipe down the mounting surfaces with a clean rag.
- 2. If required, install the interface plate to the robot arm, align using the boss or dowel pins and secure with customer supplied fasteners.
- 3. Align the dowel pins to the corresponding holes in the Master plate and secure the Master plate to the robot arm or interface plate with customer supplied (10) M10-1.5 socket head cap screws using an 8 mm hex key. Refer to *Section 8—Drawings* for mounting pattern. Apply Loctite 242 to threads (see *Table 2.1* for proper fasteners and torque).

NOTICE: If an ATI interface plate is used, fasteners to mount the Master plate is supplied with the interface plate.

- 4. Connect utilities to the appropriate module and Master plate connections. For pneumatic lock and unlock connection refer to *Section 2.7—Pneumatic Requirements*.
- 5. Safely resume normal operation.

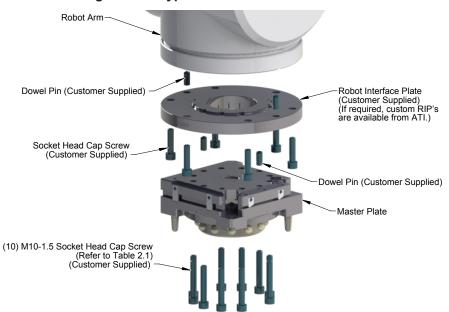
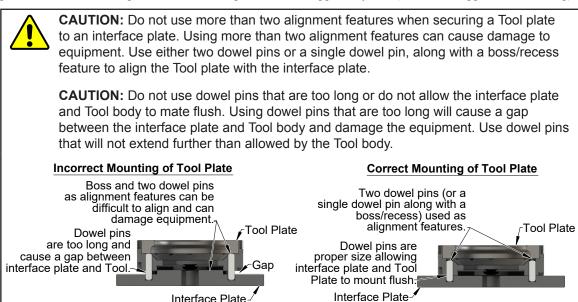


Figure 2.1—Typical Master Plate Installation

2.3 Master Plate Removal

Tools required: 8 mm hex key


- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Disconnect all utilities (for example: electrical, pneumatic, and hydraulic circuits).

NOTICE: Support the Master plate while removing the fasteners.

5. Remove the (10) M10 socket head cap screws connecting the Master plate to the robot arm or interface plate using an 8 mm hex key.

2.4 **Tool Interface**

The Tool plate is attached to the customer's tooling. An interface plate can adapt the Tool plate to customer tooling. Alignment features (dowel holes and a recess) accurately position and bolt holes to secure the Tool plate to customer tooling. Custom interface plates can be supplied by ATI (refer to the application drawing).

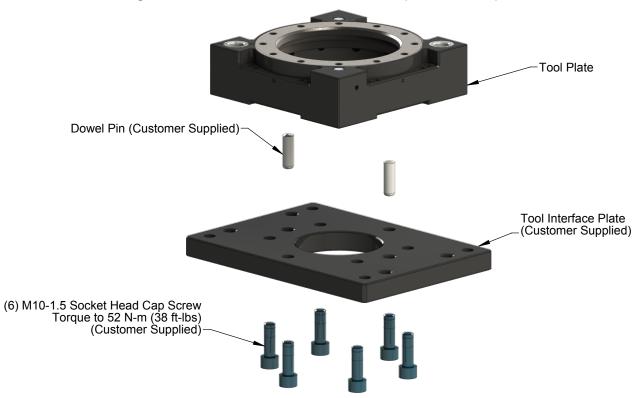
If the customer chooses to design and build a tool interface plate, consider the following points:

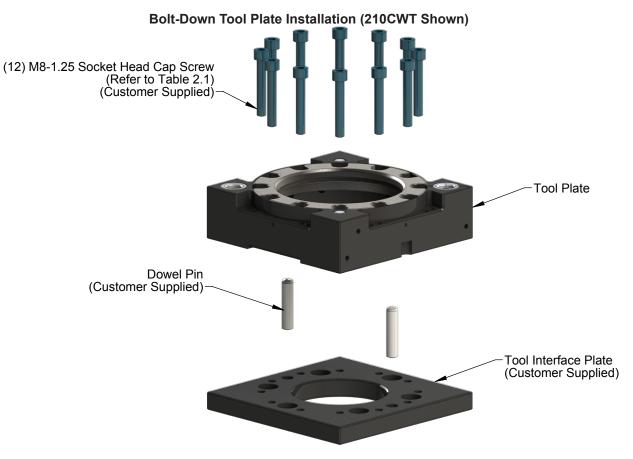
Interface Plate

- The interface plate should include bolt holes for mounting and either two dowel pins or a dowel pin and a boss for accurate positioning on the customer tooling and Tool plate. The dowel and boss features prevent unwanted rotation.
- Dowel pins must not extend out from the surface of the interface plate farther than the depth of the dowel holes in the Tool plate.
- The thickness of the interface plate must be sufficient to provide the necessary thread engagement for the mounting bolts. Fasteners should meet minimum recommended engagement lengths while not exceeding the maximum available thread depth. Use of bolts that are too long can cause damage to the tool side changer.
- The plate design must account for clearances required for Tool Changer module attachments and accessories.
- If a boss is to be used on the interface plate, a boss of proper height and diameter must be machined into the interface plate to correspond with the recess in the Tool plate.
- The interface plate must have a hole in its center for manually returning the locking mechanism to the unlocked position under adverse conditions (i.e. unintended loss of power and/or air pressure). The center access hole with a minimum diameter of 1" (25.4 mm) prevents debris from contaminating the locking mechanism.
- Optional cover plate available for harsh environments or where application exposes locking mechanism to debris

2.5 Tool Plate Installation (includes Bolt-Down Plate)

Tools required: 8 mm, 10 mm, or 12 mm hex key, torque wrench


Supplies required: Clean rag, Loctite 242


- 1. Wipe down the mounting surfaces with a clean rag.
- 2. If required, install the tool interface plate to the customer tooling, align using the boss or dowel pins and secure with customer supplied fasteners.
- 3. Align the dowel pins to the corresponding holes in the Tool plate and secure the Tool plate to the tool interface plate or customer tooling with customer supplied fasteners. Refer to *Section 8—Drawings* for mounting pattern. Apply Loctite 242 to threads (see *Table 2.1*).

NOTICE: If an ATI interface plate is used, fasteners to mount the Tool plate is supplied with the interface plate.

- 4. Connect utilities to the appropriate module and Tool plate connections.
- 5. Safely resume normal operation.

Figure 2.2—Standard Tool Plate Installation (210CT Shown)

2.6 Tool Plate Removal (includes Bolt-Down Plate)

Tools required: 8 mm, 10 mm, or 12 mm hex key

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Disconnect all utilities (for example: electrical, pneumatic, and hydraulic circuits).
- 5. Remove the fasteners connecting the Tool plate to the tooling or tool interface plate.

2.7 Pneumatic Requirements

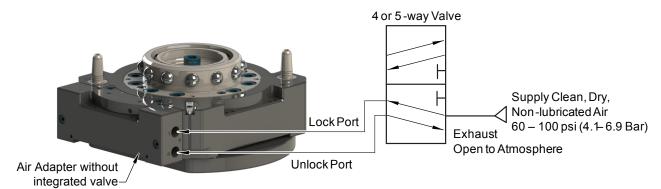
Proper operation of the locking mechanism requires a constant supply of clean, dry, non-lubricated air, with the following conditions:

- Pressure range of 60 to 100 psi (4.1 6.9 bar) Suggested 80 psi
- Filtered minimum: 40 microns

To lock or unlock the Tool Changer, a constant supply of compressed air is required. If there is a loss of air pressure in the locked state, the cam profile prevents the master plate and tool plate from unlocking, and the Tool Changer goes into the fail-safe condition.

CAUTION: Do not use the Tool Changer in a fail-safe condition. Damage to the locking mechanism can occur. Re-establish air pressure and ensure the Tool Changer is in a secure lock position before returning to normal operations.

2.7.1 Valve Requirements for Air Adapter Modules


NOTICE: A valve is not required when using a valve adapter module. A valve adapter module has an integrated solenoid valve and only requires the customer to supply a single source of air to the valve adapter.

A customer supplied 2-position 4-way or 5-way valve with either 4-port or 5-port configuration must be used to actuate the locking mechanism in the Master plate. When air is supplied to the lock or unlock port on the Master plate, the opposite port must be vented to atmosphere (for example: when air is supplied to the lock port, the unlock port must be open to the atmosphere). Failure to vent trapped air or vacuum on the inactive port may inhibit operation of the locking mechanism and prevent coupling or uncoupling.

CAUTION: The locking mechanism will not function properly when connected to a 3-way valve as this type of valve is incapable of venting trapped air or vacuum from within the Tool Changer. This could result in injury to personnel, or damage to the product and attached tooling. Connect the Lock and Unlock supply air to a 2-position 4-way or 5-way valve with either 4-port or 5-port configuration.

Figure 2.3—Lock and Unlock Pneumatic Connections

Electrical Connections 2.8

The Tool Changer is available with integrated lock/unlock sensors. If the sensors are not used, plugs are provided to seal the locking mechanism. If a control/signal module is to be utilized on Flat 'A' when ordered, the sensors will be connected to the module prior to shipping.

2.8.1 PNP Type Lock, Unlock and RTL Sensors (-SM, -SR, -SL, -ST sensor designations)

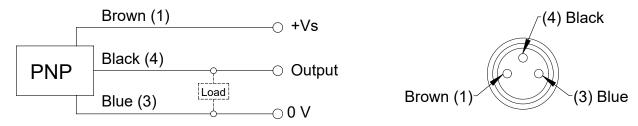

These sensors are used on the 9121-210AM-0-0-0-SM, 9121-210AM-0-0-0-SR, 9121-210AM-0-0-0-SL and 9121-210AM-0-0-0-ST.

Table 2.2—PNP (Current Sourcing)				
Description	Value			
Voltage Supply Range	10-30VDC			
Output Circuit	PNP make function (NO)			

Figure 2.4—PNP Type Lock, Unlock and RTL Sensors

PNP (Current Sourcing)

Connector

2.8.2 NPN Type Lock, Unlock and RTL Sensors (-SP, -SU sensor designations)

These sensors are used on the 9121-210AM-0-0-0-SP and 9121-210AM-0-0-0-SU.

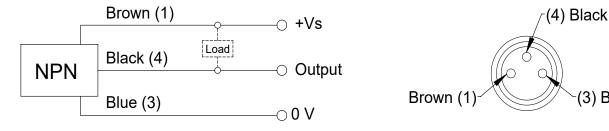

Table 2.3—NPN (Current Sinking)			
Description	Value		
Voltage Supply Range	10-30 VDC		
Output Circuit	NPN make function (NO)		

Figure 2.5—NPN Type Lock, Unlock and RTL Sensors

NPN (Current Sinking)

Connector

(3) Blue

3. Operation

The Master plate locking mechanism is pneumatically driven to couple and uncouple with the Tool plate bearing race.

CAUTION: Operation of the Tool Changer is dependent on maintaining an air pressure of 60 to 100 psi (4.1 - 6.9 bar). Damage to the locking mechanism could occur. Robot motion must be halted if the air supply pressure drops below 60 psi (4.1 bar).

NOTICE: All Tool Changers are lubricated prior to shipment. The customer must apply additional lubricant to the locking mechanism components and alignment pins prior to operation. Tubes of lubricant for this purpose are shipped with every Tool Changer. Standard Tool Changers require MobilGrease XHP222 Special (a NLGI #2 lithium complex grease with molybdenum disulfide). For custom applications, such as food grade or surgical applications, specialized lubricants might be required.

Coupling should occur with the Master plate in the No-TouchTM locking zone. As coupling occurs, the Master plate should pull the Tool plate into the locked position.

Program the robot to minimize misalignment during coupling and uncoupling. Greater offsets can be accommodated by the Master and Tool plates but will increase wear. Misalignments can be caused by improper tool stand design. Refer to Tool Storage Considerations section.

Figure 3.1—Offset Definitions

Master Plate

Tool Plate

Cocking Offset (About X and Y)

X, Y, and Z Offset

Table 3.1—Maximum Recommended Offsets Prior to Coupling **No-Touch Zone Z** X and Y Offset **Cocking Offset Twisting Offset** Model Offset (Max)² (Max) (Max) (Max)1 0.08" ±0.08" QC-210 ±0.7° ±1° (2 mm) (2 mm)

Notes:

- 1. Maximum values shown. Decreasing actual values will minimize wear during coupling/uncoupling.
- 2. Actual allowable values may be higher in some cases but higher offsets will increase wear during coupling.

3.1 Conditions for Coupling

The following conditions should be considered when operating the Tool Changer. For more details about programming the robot, refer to the Operation section of the Control/Signal Module Manual.

CAUTION: Do not attempt to couple the Tool Changer when in locked position. The locking mechanism must be in the unlock position when attempting to couple the Tool Changer. Failure to adhere to this condition may result in damage to the unit and/or the robot. Always unlock the Master prior to coupling to a Tool.

1. Unlock the Tool Changer by removing air pressure from the lock port and supplying air pressure to the unlock port (if equipped, the unlock sensor indicates the Tool Changer is unlocked).

NOTICE: For Tool Changers with a control/signal module and air/valve adapters with a double solenoid valve, turn the Unlatch output ON and turn the Latch output OFF. For Tool Changers with a control/signal module and air/valve adapters with a single solenoid valve, turn the Unlatch output ON. Some control/signal modules prevent the Tool Changer from being unlocked unless the Master and Tool are coupled and nested properly in the tool stand, a manual override procedure is required to unlock the Tool Changer. Refer to your Control/Signal Module Manual for instructions.

- 2. Position the Master above the Tool and move the Master into ready to lock position. The mating surfaces of the Master and Tool should be parallel and not touching. Make sure that the tapered alignment pins from the Master enter the alignment holes on the Tool. The alignment pins should be relatively concentric with the alignment bushings with no contact between the two.
- 3. It is recommended that the mating faces of the Master and Tool not be touching but be within the No-Touch distance of each other when coupling to minimize stress and wear on the locking mechanism. The locking mechanism allows the Master to "pull up" the Tool with gaps between the two sides.

CAUTION: Direct contact of the Master and Tool mating surfaces is not suggested or required just prior to coupling. Contact may result in damage to the unit and/or the robot. No-Touch locking technology allows the unit to couple with a separation distance between the Master and Tool.

4. The RTL (Ready-To-Lock) sensor and target that are built into the Tool Changer must be positioned within approximately 0.05" (1.5 mm) of each other for the sensors to detect Tool presence. RTL signals are not required to couple the Tool Changer but are recommended as a confirmation of coupling prior to removing the Tool from the tool stand.

NOTICE: At this point, communication is initiated with the ATI Tool and downstream nodes. If equipped, Tool-ID and communications become available. Depending on the type of control/signal module, additional notifications such as RTLV, TSRV, TSIV, Tool Present, Unlatch Enabled, and other notifications can provide verification of properly functioning system components.

5. Couple the Tool Changer by releasing the air pressure from the unlock port and supplying air pressure to the lock port. Air must be maintained on the lock port during operation to assure rigid coupling (if equipped, the lock sensor indicates the Tool Changer is in the locked position).

NOTICE: For Tool Changers with a control/signal module and air/valve adapters with a double solenoid valve, turn the Unlatch output OFF and turn the Latch output ON. For Tool Changers with a control/signal module and air/valve adapters with a single solenoid valve, turn the Unlatch output OFF.

6. A sufficient delay must be programmed between locking valve actuation and robot motion so that the locking process is complete before moving the robot. If equipped with Lock and Unlock sensors, the Lock signal should read "ON" (true) and the Unlock signal should read "OFF" (false).

NOTICE: If the locking mechanism has been actuated and both the Lock and Unlock signals are OFF, then a "missed tool" condition has occurred (for example, the Tool is not in the stand or is not positioned properly). **In this case an error should be generated and the robot program halted.** The situation requires manual inspection to determine the cause of the problem. Some configurations will require a manual unlock of the Master plate before attempting coupling, refer to the Control/Signal Module Manual for instructions.

NOTICE: The locking mechanism must be in the unlock state before another attempt is made to couple or damage could occur to the robot and/or the Tool Changer.

3.2 Fail-Safe Operation

A fail-safe condition occurs when there is an unintended loss of lock air pressure to the Master plate. When air pressure is lost, the Tool Changer relaxes and there may be a slight separation between the Master and Tool plates. The lock sensor may indicate that the unit is not locked. ATI's patented fail-safe feature utilizes a multi-tapered cam to trap the ball bearings and prevent an unintended release of the Tool plate. Positional accuracy of the tooling is not maintained during this fail-safe condition. Do not operate the Tool Changer in the fail-safe condition. If source air is lost to the unit, movement should be halted until air pressure is restored.

After air pressure is re-established to the Master plate, the locking mechanism will energize and securely lock the Master and Tool plates together. In some cases when the load on the tool changer is significantly off center, it may be necessary to position the load underneath the tool changer or return the tool to the tool storage location to ensure a secure lock condition. If equipped, make sure the lock sensor indicates the Tool Changer is in the locked position before resuming normal operations. Consult your Control/Signal Module Manual for specific error recovery information.

CAUTION: Do not use the Tool Changer in a fail-safe condition. Damage to the locking mechanism could occur. Re-establish air pressure and ensure the Tool Changer is in a secure lock position before returning to normal operations.

3.3 Conditions for Uncoupling

Refer to your Air/Valve Adapter and/or Control/Signal Module Manual's Operation section for operation during coupling/uncoupling.

1. Move the robot to position the Tool plate in the tool stand. The position for coupling and uncoupling are the same.

NOTICE: Depending on the type of control/signal module, additional notifications such as TSRV, TSIV, and other notifications can provide verification of properly functioning system components.

2. Unlock the Tool Changer by releasing the air pressure from the lock port and supplying air pressure to the unlock port. The Tool Changer locking mechanism moves to the unlocked position and the Tool plate releases from the Master plate (If equipped, the unlock sensor indicates the Tool Changer is unlocked).

NOTICE: For Tool Changers with a control/signal module and air/valve adapters with a double solenoid valve, turn the Unlatch output ON and turn the Latch output OFF. For Tool Changers with a control/signal module and air/valve adapters with a single solenoid valve, turn the Unlatch output ON.

CAUTION: This Tool Changer may be equipped with a tool stand Interlock (TSI) feature that physically breaks the Unlatch solenoid circuit. Proper use of the TSI prevents unwanted Unlock software commands from being recognized until the circuit is made. Make sure the Tool Changer is positioned properly to trip actuate the TSI switch when the Tool is in the tool stand.

3. A sufficient delay must be programmed between unlocking valve actuation and robot motion so that the unlocking process is complete before moving the robot. If equipped with lock and unlock sensors, the Unlock signal should read "on" (true) and the Lock signal should read "off" (false). Any other condition indicates a problem and the robot program should be halted. Once the Lock and Unlock signals in the proper state, the Master plate may be moved away from the Tool plate in the axial direction.

The robot and Master plate can now proceed to another Tool plate for coupling and subsequent operations.

3.4 Tool Identification

When using multiple Tools, it is good practice to implement a Tool-ID system that identifies each Tool with a unique code. Tool-ID can be used to verify that the robot has picked up the proper Tool. Modules with Tool-ID are available for purchase through the ATI website. Go to http://www.ati-ia.com/products/toolchanger/tool changer modules.aspx for products available or contact ATI for assistance.

3.5 Tool Storage Considerations

NOTICE: Improperly designed tool stands cause components to become stuck and causes excessive wear of components. Thus, carefully consider tool stand design for optimal operation of the Tool Changer. For assistance, contact an ATI representative.

When Tool plates are not in use, store the Tool plate with attached customer tooling in a tool stand. ATI provides compatible tool stands designed for durability, longevity, and maximum adaptability to fit most customers' applications. The ATI Tool Stand Large (TSL) system is compatible with ATI Tool Changer sizes QC-150 and larger. The TSL systems can be configured in a variety of arrangements and are available with additional modular accessories such as covers and tool sensing. For products available, contact an ATI representative or refer to the following ATI webpage: http://www.ati-ia.com/products/toolchanger/toolstand/large/LargeStand.aspx. Another resource is the ATI TSL manual: https://www.ati-ia.com/App_Content/Documents/9610-20-1058.pdf.

For some Tool Changers, ATI can provide a Teaching Aid to assist users with teaching the robot how to couple the Master with the Tool in a tool stand. For more information, refer to the *ATI Teaching Aid manual* or the *ATI webpage for Teaching Aids: https://www.ati-ia.com/products/toolchanger/TeachingAid.aspx*.

If the customer supplies the tool stand, the tool stand should include the following design considerations:

- Provide a fixed, repeatable, level, and stable position for tool pick-up and drop-off.
- Support the weight of the Tool Changer Tool plate, tool interface plate, optional modules, cables, hoses, and customer tooling without allowing deflection in excess of the offsets specified.
- (Preferred) the Tool should hang vertically in the tool stand so that gravity assists to uncouple the Tool plate from the Master plate during unlocking.
- It is possible to design tool stands that hold tools in the horizontal position, but the necessary compliance must be provided during coupling and uncoupling. In general, horizontally positioned tool stands cause more wear on the locking mechanism and locating features of the Tool Changer and tool stand. Furthermore, horizontal pick-up and drop-off of the Tool plate increases wear on the robot arm.
- A variety of methods may be used to position the Tool in the tool stand. A common method is to use tapered alignment pins and bushings. Robot programming and positional repeatability are critical aspects of successful Tool pick-up and drop-off.
- Install a debris shield to cover Tools and modules to protect them in dirty environments, such as grinding or welding. Alternatively, position tool stands in areas that are shielded from weld spatter, fluids, adhesives, or other debris.
- For proximity sensors, consider the following:
 - Install a proximity sensor that detects the presence of the Tool in the tool stand. The sensor may be used prior to coupling to ensure the Tool is seated in the stand. Sensors may also be used as the robot starts to move away after uncoupling. Sensors provide a safety measure if a Tool becomes jammed in the stand or if the Tool fails to release from the robot.
 - Position the proximity sensor so that the sensing face is vertical to prevent metal shavings, weld spatter, or other debris from falling on the sensor and creating false readings.

4. Maintenance

WARNING: Do not perform maintenance or repair(s) on the Tool Changer or modules unless the Tool is safely supported or placed in the tool stand, all energized circuits (for example: electrical, air, water, etc.) are turned off, pressurized connections are purged and power is discharged from circuits in accordance with the customer specific safety practices and policies. Injury or equipment damage can occur with the Tool not placed and energized circuits on. Place the Tool in the tool stand, turn off and discharge all energized circuits, purge all pressurized connections, and verify all circuits are de-energized before performing maintenance or repair(s) on the Tool Changer or modules.

NOTICE: The cleanliness of the work environment strongly influences the trouble free operation of the Tool Changer. The dirtier the environment, the greater the need for protection against debris. Protection of the entire EOAT, the Master, the Tool and all of the modules may be necessary. Protective measures include the following:

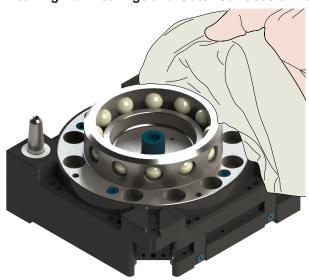
- Placement of tool stands away from debris generators
- Covers incorporated into the tool stands

Guards, deflectors, air curtains, and similar devices built into the EOAT and the tool stand

Table 4.1—Maintenance

Preventive Maintenance

A visual inspection and preventive maintenance schedule is provided in table below. Detailed assembly drawings are provided in Section 8—Drawings of this manual. Refer to module sections for detailed preventive maintenance steps for all utility modules.


	Application(s)	Tool Change Frequency	Inspection Schedule				
	Canaral usage metarial handling decling station	> 1 per minute	Weekly				
	General usage material handling docking station	< 1 per minute	Monthly				
Weldin	ng/servo/deburring, foundry operations (dirty environments)	All	Weekly				
Checkli	ist						
Mountii	ng Fasteners						
	Inspect fasteners for proper torque, interferences, and wea	r. Tighten and correct as requi	red. Refer to Table 2.1				
Ball Be	arings/Alignment Pins/Bushings/Bearing Race						
	Inspect for wear and proper lubrication. MobilGrease XHP2 molybdenum disulfide additive is suggested for locking med lubricants can become contaminated with debris. Therefore grease and replace with new as needed. See Section 4.2—Alignment Pins.	chanism and alignment pin lub e, it is recommended to thoroug	rication. Over time, ghly clean the existing				
	Inspect for excessive alignment pin/bushing wear, may be an indication of the poor robot position during pickup/ drop-off. Adjust robot position as needed. Check tool stand for wear and alignment problems. To replace worn alignment pins, refer to Section 5.2.3—Alignment Pin Replacement.						
	Inspect for wear on the ball bearings/bearing race, may be	an indication of the excessive	loading.				
Sensor	s and Cables						
	Inspect sensor cable connectors for tightness, if loose tighten connections.						
	Inspect sensor cables for any damage, cuts, and abrasion. Replace as necessary. Refer to Section 5.2.1—Sensor Replacement Procedures.						
Hoses							
	Inspect hose connection for tightness and leaks. If the leaking or loose secure hose connection.						
	☐ Inspect hoses for interferences, abrasions, cuts, and leaks. Replace as required.						
Electric	Electrical Contacts/Pin Block (Modules)						
	Inspect for damage, debris, and stuck/burnt pins. Clean pin blocks as required, refer to Section 4.3—Pin Block Inspection and Cleaning.						
Seals (I	Seals (Modules)						
	Inspect for wear, abrasion, and cuts. Refer to Section 5.2.2	—V-ring Seal Replacement					

4.2 Cleaning and Lubrication of the Locking Mechanism and Alignment Pins

Supplies required: Clean rag, MobilGrease® XHP222 Special Grease

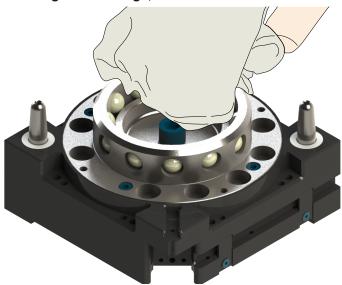

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Use a clean rag to thoroughly remove any lubricant and debris from the ball bearings, male coupling, cam, and alignment pins.

Figure 4.1—Cleaning Ball Bearings and Outer Surfaces of Male Coupling

5. Use a clean rag to thoroughly remove any lubricant and debris from the inner surface of the male coupling and cam.

Figure 4.2—Cleaning Ball Bearings, Cam and Inner Surfaces of Male Coupling

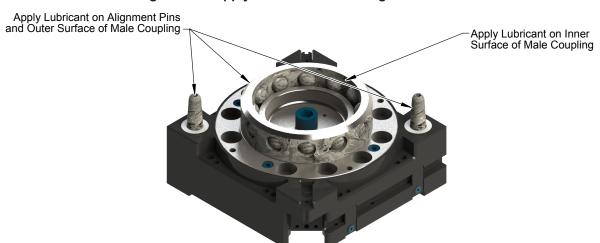
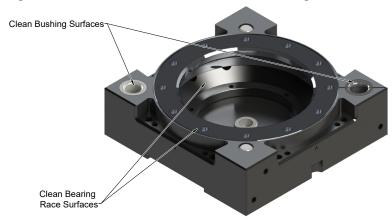

6. Check each ball bearing to make sure it moves freely in the male coupling. Additional cleaning may be necessary to free up any ball bearings that are sticking in place.

Figure 4.3—Check Ball Bearing Movement

7. Apply a liberal coating of lubricant to the ball bearings, the male coupling (inside and out), and the alignment pins.

Figure 4.4—Apply Lubricant to Locking Mechanism



8. Use a clean rag to thoroughly remove any lubricant and debris from the Tool plate bearing race and bushings.

NOTICE: No application of lubrication is necessary on the Tool plate components.

9. Safely resume normal operation.

Figure 4.5—Clean Tool Plate Surfaces of locking Mechanism

4.3 Pin Block Inspection and Cleaning

Tools required: Nylon Brush (ATI part number 3690-0000064-60)

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Inspect the Master and Tool pin blocks for debris or darkened pins.

Figure 4.6—Inspect Master and Tool Pin Blocks

Tool Module Pin Block

Master Module Pin Block

5. If debris or darkened pins are present, use a vacuum to remove the debris, and clean using a nylon brush (ATI part number 3690-000064-60).

NOTICE: Do not use an abrasive media and/or cleaners or solvents to clean the contact pins. Using abrasive media and/or cleaners or solvents will cause damage to the contact surface or cause pins to stick. Clean contact surfaces with a vacuum or non-abrasive media such as a nylon brush (ATI part number 3690-0000064-60).

Figure 4.7—Clean Pin Blocks with a Nylon Brush

6. Inspect the Master and Tool pin blocks for stuck pins or pin block damage.

Figure 4.8—Stuck Pin and Pin Block Damage

- 7. If pins become stuck or if there is damage to the pin block, contact ATI for either a possible pin replacement procedure or module replacement.
- 8. Safely resume normal operation.

5. Troubleshooting and Service Procedures

The following section provides troubleshooting and service information to help diagnose conditions and repair the Tool Changer or control/signal module.

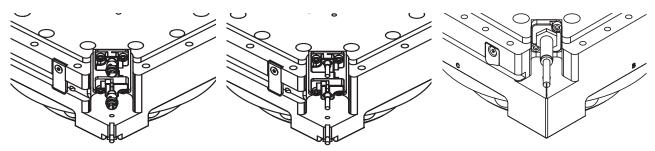
WARNING: Do not perform maintenance or repair(s) on the Tool Changer or modules unless the Tool is safely supported or placed in the tool stand, all energized circuits (for example: electrical, air, water, etc.) are turned off, pressurized connections are purged and power is discharged from circuits in accordance with the customer specific safety practices and policies. Injury or equipment damage can occur with the Tool not placed and energized circuits on. Place the Tool in the tool stand, turn off and discharge all energized circuits, purge all pressurized connections, and verify all circuits are de-energized before performing maintenance or repair(s) on the Tool Changer or modules.

5.1 Troubleshooting Procedures

The troubleshooting table is provided to assist in the diagnosing issues that may cause the Tool Changer not to function properly.

	Table 5.1	—Troubleshooting
Symptom	Cause	Resolution
	Insufficient or no air pressure supply to the lock or unlock ports.	Verify proper air pressure and pneumatic valve is supplied. Refer to Section 2.7—Pneumatic Requirements.
	Air pressure trapped in the de-energized lock or unlock ports.	Air pressure must be vented to the atmosphere properly, refer to Section 2.7—Pneumatic Requirements or refer to the troubleshooting section of the air/valve adapter manual for more information.
	Pneumatic connections loose or damaged, solenoid cable damaged.	Refer to the air/valve adapter manual for more information.
Tool Changer will not lock and/ or unlock (or lock sensor does	Debris caught between the Master and Tool plates.	Clean debris from the between Master and Tool plates. Verify mounting fasteners is secure and does not protrude above the mating surfaces.
not indicate Tool Changer is locked)	The ball bearings and/or cam are not moving freely in the male coupling.	Clean and lubricate as needed to restore smooth operation (see Section 4.2—Cleaning and Lubrication of the Locking Mechanism and Alignment Pins)
	The Master plate and Tool plate are not within the specified No-Touch	Check that the Tool is properly seated in the tool stand. Refer to Section 3.5—Tool Storage Considerations.
	zone when attempting to lock.	Re-teach the robot to bring the Master plate and Tool plate closer together prior to attempting to lock.
	The control/signal module or air/valve adapter is not operating correctly.	Check the troubleshooting section of the manual for the specific module.
Unit is locked but lock signal does not read "on". Lock sensor/cable is damaged.		Replace the lock sensor assembly as necessary. Refer to Section 5.2.1—Sensor Replacement Procedures.
Unit is unlocked but unlock signal does not read "on"	Unlock sensor/cable is damaged.	Replace the unlock sensor assembly as necessary. Refer to Section 5.2.1—Sensor Replacement Procedures.
Read-To-Lock	Poody To Look (PTL) concers	Re-teach the robot to bring the Master plate and Tool plate closer together prior to attempting to lock. Refer to Section 3—Operation
(RTL) does not read "on" when Master and Tool plates are mated.	Ready-To-Lock (RTL) sensors not activated indicating Tool is not positioned properly.	Check that both RTL sensors and cables are not damaged and sensor connection to the control/signal module or air adapter are tight. Replace damaged RTL sensors as necessary. Refer to Section 5.2.1—Sensor Replacement Procedures.

	Table 5.1—Troubleshooting				
Symptom	Cause	Resolution			
Units Equipped with Electrical/Servo/Control/Signal Modules					
Loss of	Debris in and around contact pins. Contact Pin worn or damaged.	Inspect V-ring seal for damage, replace damaged seal. Refer to Section 5.2.2—V-ring Seal Replacement			
Communication	Cable connections loose or cables damaged	Check that cable connection are secure and cables are not damaged.			


5.2 Service Procedures

Component replacement procedures are provided in the following section.

5.2.1 Sensor Replacement Procedures

NOTICE: The lock and unlock sensor assemblies are precision aligned and permanently assembled at the factory. Do not attempt to disassemble and rebuild.

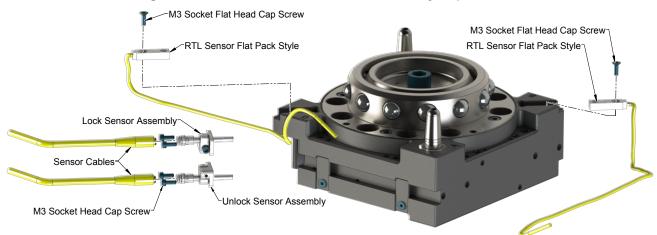
Figure 5.1—Determine what type of Lock/Unlock sensors the Tool Changer uses:

Lock and Unlock Sensor
Assembly Replacement (ST and
SU Sensor Designation)
Refer to Section 5.2.1.1—Lock
and Unlock Sensor Replacement

(ST and SU Sensor Designation)

Lock and Unlock Sensor Assembly Replacement (Serial Numbers QM0821 and higher) Refer to Section 5.2.1.3—Lock and Unlock Sensor Assembly Replacement (Serial Numbers QM0821 and higher) Lock and Unlock Sensor Assembly Replacement Refer to Section 5.2.1.4— Lock and Unlock Sensor Assembly Replacement (with Sensor Assemblies)

5.2.1.1 Lock and Unlock Sensor Replacement (ST and SU Sensor Designation)


Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2.5 mm hex key, torque wrench

Supplies required: Loctite 222

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Disconnect the sensor cable connector from the lock and/or unlock sensor.
- 5. Using a 2.5 mm hex key, remove the (2) M3 socket head cap screws that secure the lock and/or unlock sensor assembly to the Tool Changer body. Pull the sensor assembly straight out from the Tool Changer body.
- 6. Remove the lock and/or unlock sensor assembly from the cable channel of the Tool Changer body. There is an O-ring around the cylinder barrel, ensure O-ring came off with old sensor before continuing. Discard the removed sensor assembly.

Figure 5.2—Lock and Unlock Sensor Assembly Replacement

- 7. Install the new lock and/or unlock sensor assembly, routing the cable into the cable channel of the Tool Changer body.
- 8. Attach the sensor cable connectors to the lock and/or unlock sensor.
- 9. Insert the lock and/or unlock sensor assembly into the Tool Changer body.
- 10. Apply Loctite 222 to the M3 socket head cap screws. Secure the sensor assembly with the (2) M3 socket flat head screws. Tighten to 12 in-lbs (1.4 Nm) using a 2.5 mm hex key.
- 11. Confirm the operation of the unlock sensor by unlocking the Tool Changer and then checking to see If the unlock sensor cable LED is on.
- 12. Safely resume normal operation.

5.2.1.2 RTL Sensor Replacement (ST and SU Sensor Designation)

Refer to Figure 5.2.

Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2 mm hex key, torque wrench

Supplies required: Loctite 222

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Using a 2 mm hex key, remove the M3 socket flat head cap screw that secure the RTL sensor to the Tool Changer body.
- 5. Disconnect the RTL sensor cable.
- 6. Remove the RTL sensor from the Tool Changer body. Discard the removed RTL sensor.
- 7. Connect the RTL sensor cable.
- 8. Install the RTL sensor to the Tool Changer body.
- 9. Apply Loctite 222 to the M3 socket flat head screws. Secure the sensor to the Tool Changer body and tighten to 60 in-ozs (0.4 Nm) using a 2 mm hex key.
- 10. Safely resume normal operation.

5.2.1.3 Lock and Unlock Sensor Assembly Replacement (Serial Numbers QM0821 and higher)

Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2 mm, 2.5 mm, and 5 mm hex key, torque wrench

Supplies required: Loctite 222 and 242

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. If there is an optional module on Flat D, remove the (2) M6 socket head cap screws that secure the module(s) to the Tool Changer body using a 5 mm hex key. Refer to *Figure 5.3*
- 5. If equipped, lift off the optional modules from Flat D.
- 6. Using a 2 mm hex key, remove the (2) M3 socket flat head cap screws and the (2) cable retaining tabs on Flat D of the Tool Changer body.
- 7. Unscrew the lock and/or unlock sensor cable connector from the air/valve adapter or control/signal module.
- 8. Using a 2.5 mm hex key, remove the (2) M3 socket head cap screws that secure the lock and/or unlock sensor assembly to the Tool Changer body. Pull the sensor assembly straight out from the Tool Changer body.
- 9. Remove the lock and/or unlock sensor assembly from the cable channel of the Tool Changer body. There is an O-ring around the cylinder barrel, ensure O-ring came off with old sensor before continuing. Discard the removed sensor assembly.

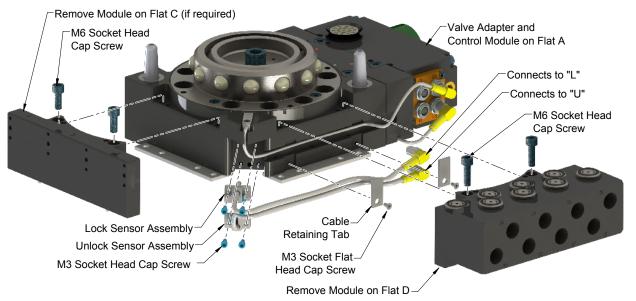


Figure 5.3—Lock and Unlock Sensor Assembly Replacement

- 10. Install the new lock and/or unlock sensor assembly, routing the cable into the cable channel of the Tool Changer body.
- 11. Attach the lock and/or unlock sensor cable connectors to the proper connector on the control/signal module.

- 12. Insert the lock and/or unlock sensor assembly into the Tool Changer body as shown in *Figure 5.3*.
- 13. Secure the sensor assembly using the (2) M3 socket flat head screws. Tighten to 12 in-lbs (1.4 Nm) using a 2 mm hex key.
- 14. Install the (2) cable retaining tabs on Flat D of the Tool Changer body and secure with the (2) M3 socket flat head cap screws. Tighten to 12 in-lbs (1.4 Nm) using a 2 mm hex key.
- 15. If the optional modules were installed on Flat D, install the modules.
- 16. Apply Loctite 242 to the M6 socket head cap screws. Install the (2) M6 Socket Head Cap Screws that secure the module to the Tool Changer body and tighten to 70 in-lbs (7.9 Nm) using a 5 mm hex key.
- 17. Confirm the operation of the Unlock sensor by unlocking the Tool Changer and then checking to see If the Unlock sensor cable LED is on.

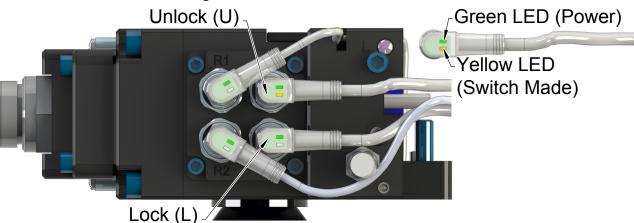


Figure 5.4—Unlock Sensor Cable LEDs

18. Confirm the operation of the Lock sensor by locking the Tool Changer and then checking to see If the Lock sensor cable LED is on.

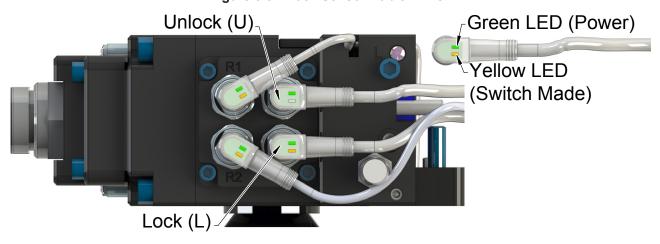


Figure 5.5—Lock Sensor Cable LEDs

- 19. Safely resume normal operation.
- 20. Safely resume normal operation.

5.2.1.4 Lock and Unlock Sensor Assembly Replacement (with Sensor Assemblies)

Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2 mm, 2.5 mm, and 5 mm hex key, torque wrench

Supplies required: Loctite 222 and 242

- 1. Place the Tool in a secure location
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. If there is an optional module on Flat B, C, or D, remove the (2) M6 socket head cap screws that secure the module(s) to the Tool Changer body using a 5 mm hex key. Refer to *Figure 5.6*

Note: If the lock sensor is being replaced the module on Flat B may need to be removed. If the module block access to the lock sensor it will need to be removed.

- 5. If equipped, lift off the optional modules from Flats B, C, and D.
- 6. Using a 2 mm hex key, remove the (2) M3 socket flat head cap screws and the (2) cable retaining tabs on Flat D of the Tool Changer body.
- 7. For the lock sensor, remove the (2) M3 socket flat head cap screws and the (2) cable retaining tabs on Flat C of the Tool Changer body using a 2 mm hex key.
- 8. Unscrew the lock and/or unlock sensor cable connector from the air/valve adapter or control/signal module.
- 9. Using a 2.5 mm hex key, remove the (2) M3 socket head cap screws that secure the lock and/or unlock sensor assembly to the Tool Changer body. Pull the sensor assembly straight out from the Tool Changer body.
- 10. Remove the lock and/or unlock sensor assembly from the cable channels of the Tool Changer body. Discard the removed sensor assembly.

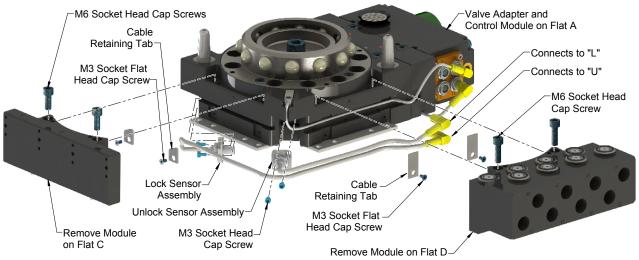


Figure 5.6—Lock and Unlock Sensor Assembly Replacement

- 11. Install the new lock and/or unlock sensor assembly, routing the cable into the cable channels of the Tool Changer body.
- 12. Attach the lock and/or unlock sensor cable connectors to the proper connector on the air adapter or control/signal module.

- 13. Insert the lock and/or unlock sensor assembly into the Tool Changer body.
- 14. Apply Loctite 222 to the M3 socket flat head screws, secure the sensor assembly using the (2) M3 socket flat head screws and tighten to 12 in-lbs (1.4 Nm) using a 2.5 mm hex key.
- 15. Install the (2) cable retaining tabs on Flat D of the Tool Changer body and secure with the (2) M3 socket flat head cap screws. Tighten to 12 in-lbs (1.4 Nm) using a 2 mm hex key.
- 16. For the lock sensor, install the (2) cable retaining tabs on Flat C of the Tool Changer body and secure with the (2) M3 socket flat head cap screws. Tighten to 12 in-lbs (1.4 Nm) using a 2 mm hex key.
- 17. If the optional modules were removed from Flats B, C, and D, install the modules.
- 18. Apply Loctite 242 to the M6 socket head cap screws. Install the (2) M6 socket head cap screws that secure the module(s) to the Tool Changer and tighten to 70 in-lbs (7.9 Nm) using a 5 mm hex key.
- 19. Confirm the operation of the unlock sensor by unlocking the Tool Changer and then checking to see if the unlock sensor in-body LED is on.
- 20. Confirm the operation of the lock sensor by locking the Tool Changer and then checking to see if the lock sensor in-body LED is on.
- 21. Safely resume normal operation.

5.2.1.5 RTL Flat Pack Style Sensor Replacement (R2 Sensor)

Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2 mm and 5 mm hex key, torque wrench

Supplies required: Loctite 222 and 242

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. If there is an optional module on Flat D, remove the (2) M6 socket head cap screws that secure the module to the Tool Changer body using a 5 mm hex key.
- 5. If equipped, lift off the optional modules from Flat D.
- 6. Using a 2 mm hex key, remove the (2) M3 socket flat head cap screws and the (2) cable retaining tabs on Flat D of the Tool Changer body.
- 7. Using a 2 mm hex key, remove the M3 socket flat head cap screw that secure the RTL sensor to the Tool Changer body.
- 8. Unscrew the RTL sensor cable connector from the air adapter or control/signal module.
- 9. Remove the RTL sensor from the cable channel of the Tool Changer body. Discard the removed RTL sensor.

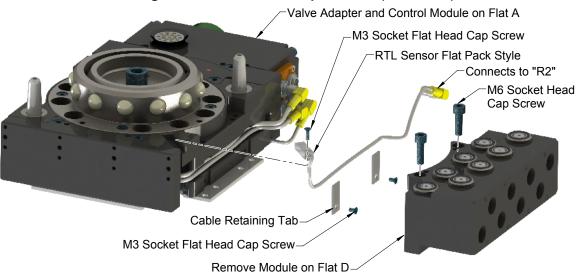
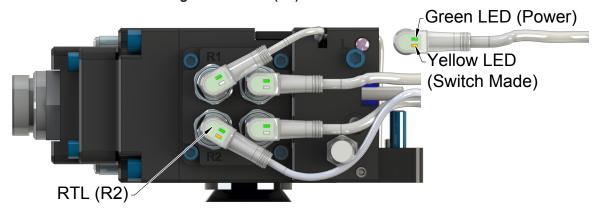



Figure 5.7—RTL Sensor Replacement (R2 Sensor)

- 10. Install the new RTL sensor, routing the cable into the cable channel of the Tool Changer body.
- 11. Attach the RTL sensor cable to the R2 connector on the air/valve adapter or control/signal module.
- 12. Install the RTL sensor to the Tool Changer body.
- 13. Apply Loctite 222 to the M3 socket flat head screws. Secure the sensor to the Tool Changer body and tighten to 60 in-ozs (0.4 Nm) using a 2 mm hex key.
- 14. Install the (2) cable retaining tabs on Flat D of the Tool Changer body and secure with the (2) M3 socket flat head cap screws. Tighten to 12 in-lbs (1.4 Nm) using a 2 mm hex key.

- 15. If the optional module was removed from Flat D, install the module.
- 16. Apply Loctite 242 to the M6 socket head cap screws. Install the (2) M6 Socket Head Cap Screws that secure the module to the Tool Changer body and tighten to 70 in-lbs (7.9 Nm) using a 5 mm hex key.
- 17. Confirm the operation of the RTL sensor by bringing a metallic object into close proximity to the face of the sensor and watching for the LED in the sensor cable to light up.

Figure 5.8—RTL (R2) Sensor Cable LEDs

18. Safely resume normal operation.

5.2.1.6 RTL Flat Pack Style Sensor Replacement (R1 Sensor)

Parts required: Refer to Section 6—Serviceable Parts

Tools required: 2 mm and 3 mm hex key, torque wrench

Supplies required: Loctite 222

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Depending on the robot and interface plate used the Tool Changer Master plate may have to be removed. Refer to *Section 2.3—Master Plate Removal*.
- 5. Using a 2 mm hex key, remove the (2) M3 socket flat head cap screws and (2) cable retaining tabs on the air/valve adapter or the (3) M5 socket flat head cap screws and Master cleat using a 3 mm hex key. Refer to *Figure 5.9* and *Figure 5.10*.
- 6. Using a 2 mm hex key, remove the M3 socket flat head cap screw that secure the RTL sensor assembly to the Tool Changer body.
- 7. Unscrew the RTL sensor cable connector from the air adapter or control/signal module.
- 8. Remove the RTL sensor from the cable channel of the air/valve adapter. Discard the removed RTL sensor.

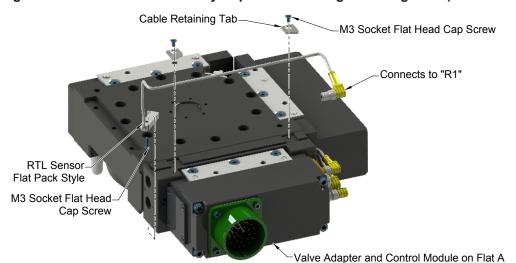
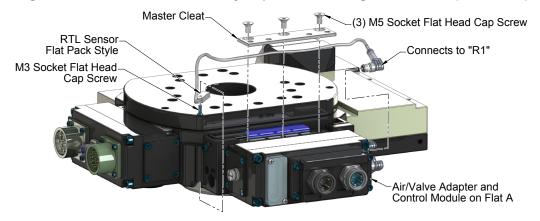



Figure 5.9—RTL Sensor Assembly Replacement using Retaining Tabs (R1 Sensor)

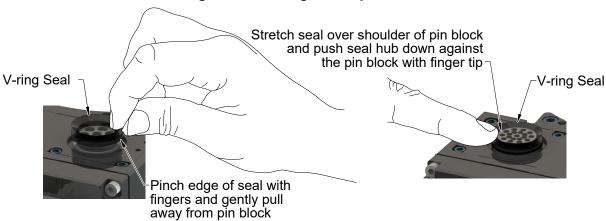
Figure 5.10—RTL Sensor Assembly Replacement using Master Cleat (R1 Sensor)

- 9. Install the new RTL sensor, routing the cable into the cable channel of the air/valve adapter.
- 10. Attach the RTL sensor cable to the R1 connector on the air adapter or control/signal module.
- 11. Install the RTL sensor assembly to the Tool Changer body.
- 12. Apply Loctite 222 to the M3 socket flat head screws. Secure the sensor to the Tool Changer body and tighten to 60 in-ozs (0.4 Nm) using a 2 mm hex key.
- 13. If the removed, install the (2) cable retaining tabs on the air/valve adapter and secure with the (2) M3 socket flat head cap screws. Tighten to contact using a 2 mm hex key. If the removed, install the Master cleat and apply Loctite 222 to the (3) M5 socket flat head cap screws. Secure the Master cleat with the (3) M5 socket head cap screw and tighten to 28 in-lbs (3.2 Nm) using a 3 mm hex key.
- 14. Confirm the operation of the RTL sensor by bringing a metallic object into close proximity to the face of the sensor and watching for the LED in the sensor cable to light up.

NOTICE: Some control/signal modules supply power to the RTL sensors in series. The RTL (R2) sensor will have to be switched before power is supplied to the RTL (R1) sensor. If this is the case bring a metallic object into close proximity of the both the RTL (R1 and R2) sensor.

Figure 5.11—RTL (R2) Sensor Cable LEDs

- 15. Install the Master plate to the robot arm or interface plate, refer to *Section 2.2—Master Plate Installation*.
- 16. Safely resume normal operation.


5.2.2 V-ring Seal Replacement

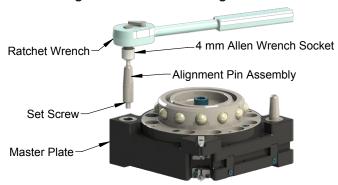
Parts required: Refer to Section 6—Serviceable Parts

The seal protects the electrical connection between the Master and Tool module. Replace the seal if it becomes worn or damaged.

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. To remove the existing seal, pinch the edge of the seal and pull the seal away from the pin block on the Master module.
- 5. To install a new seal, stretch the new seal over the shoulder of the pin block.
- 6. Push the seal hub down against the pin block.
- 7. Safely resume normal operation.

Figure 5.12—V-ring Seal Replacement

5.2.3 Alignment Pin Replacement


Parts required: Refer to Section 6—Serviceable Parts
Tools required: 3 mm or 4 mm hex key, torque wrench

Supplies required: Clean rag, Loctite 242, MobilGrease XHP222

- 1. Place the Tool in a secure location.
- 2. Uncouple the Master and Tool plates.
- 3. Turn off and de-energize all energized circuits (for example: electrical, pneumatic, and hydraulic circuits).
- 4. Unscrew the alignment pin assembly from the Master plate using a 4 mm hex key (see *Figure 5.13*). If the alignment pin cannot be removed using the hex key in the tip, go to step 5. If the alignment was remove the go to step 7.

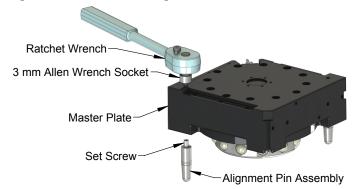

NOTICE: If the for any reason the pin cannot be removed using the hex key in the tip, it may be necessary to remove the it by other means, such as locking pliers.

Figure 5.13—Remove Alignment Pin

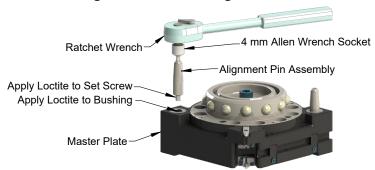

5. Another approach would be to use the access hole in the back side of the Master plate. If not already removed, remove the Master plate refer to *Section 2.3—Master Plate Removal*. Use a 3 mm hex key to remove the alignment pin from the back side of the Master plate. Refer to *Figure 5.14*.

Figure 5.14—Remove Alignment Pin from the Back Side

- 6. Once the alignment pin has been removed, verify that the assembly (pin and set screw) are intact. If the set screw portion of the assembly did not come out, it will be necessary to remove the it separately using the access hole in the back plate of the Master plate.
- 7. Apply Loctite 242 to the inside of the alignment pin bushing and the threads if the alignment pin.
- 8. Install the alignment pin assembly into the bushing on the Tool Changer. Tighten to 60 in-lbs (6.8 Nm).
- 9. Apply MobilGrease XHP222 Special grease to the alignment pin (see *Section 4.2—Cleaning and Lubrication of the Locking Mechanism and Alignment Pins*).
- 10. Safely resume normal operation.

Figure 5.15—Install Alignment Pin

6. Serviceable Parts

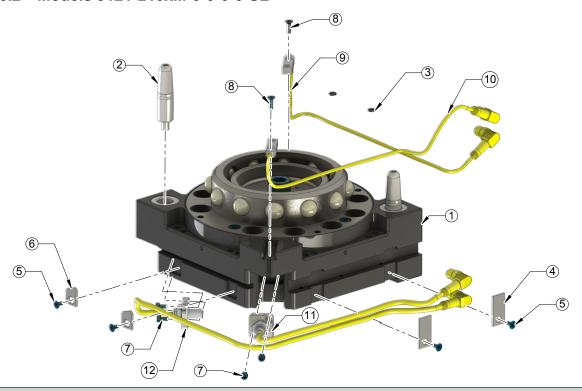

6.1 Models 9121-210xM-0-0-0-S0

	Figure 5.16—Master Plate				
Item No.	Qty	Part Number	Description		
1	1	9121-210xM-0-0-0-S0	QC-210 Base Master, No Options, with plugs in the sensor holes		
2	2	9005-20-2241	1/2" (2) Piece Pin Assembly		
3	2	3410-0001016-01	O-ring 1/16 x 1/8 I.D. x 1/4 O.D.		
4	2	9005-20-1983	Sensor Bore Cover Plate Assembly, SS Screws		
5	2	3500-1058008-21A	M3 x 8 Socket Head Cap Screw, SS, ND Ind. Microspheres Epoxy, Yellow. 0-3 uncoated lead thds. 5-7 coated thds		

Notes:

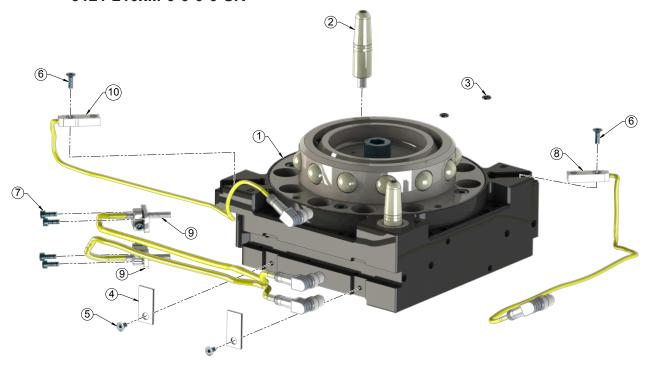

6.2 Models 9121-210xM-0-0-0-SL

Figure 5.17—QC-210 Master Plates					
Item No.	Qty	Part Number	Description		
1	1	9121-210xM-0-0-0-SL	QC-210 Master and PNP lock/unlock and RTL Sensing, LED Cables		
2	2	9005-20-2241	1/2" (2) Piece Pin Assembly		
3	2	3410-0001016-01	O-ring 1/16 x 1/8 I.D. x 1/4 O.D.		
4	2	3700-20-4092	Large Cable Retaining Tab		
5	4	3500-1258006-11	M3 x 6 mm Flat Head Socket Cap Screw Black Oxide		
6	2	3700-20-3292	Cable Retaining Tab		
7	4	3500-1057006-15	M3 x 6 socket head cap screws, Class 12.9, Blue dyed Magni-565		
8	2	3500-1258010-11	M3 x 10 mm Flat Head Socket Cap Screw Black Oxide		
9	1	8590-9909999-138	LED PNP Flat Pack Sensor .3 M Lg (90 Pico)		
10	1	8590-9909999-137	RTL2 LED PNP Flat Pack Sensor .28 M (90 Pico)		
11	1	9005-20-1359	QC-210 Lock Sensor Carrier Assembly, PNP, LED		
12	1	9005-20-1360	QC-210 UnLock Sensor Carrier Assembly, PNP, LED		

Notes:

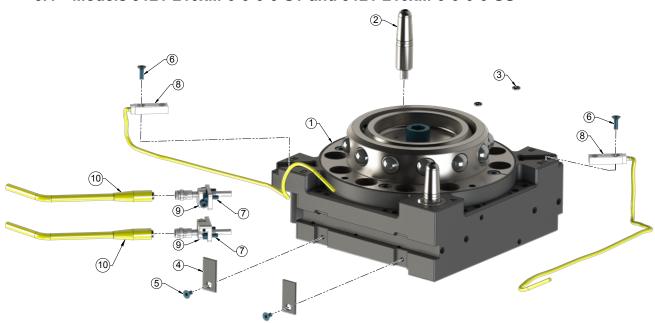

6.3 Models 9121-210xM-0-0-0-SM, 9121-210xM-0-0-0-SP and 9121-210xM-0-0-0-SR

Figure 5.18—QC-210 Master Plates					
Item No.	Qty	Part Number	Description		
1	1	9121-210xM-0-0-0-SM	QC-210 Master and PNP lock/unlock and RTL Sensing, LED Cables		
1	1	9121-210xM-0-0-0-SP	QC-210 Master and NPN lock/unlock and RTL Sensing, LED Cables		
1	1	9121-210xM-0-0-0-SR	QC-210 Master and PNP lock/unlock and RTL Sensing, RTL 1 m cables & 5 m lock/unlock cables		
2	2	9005-20-2241	1/2" (2) Piece Pin Assembly		
3	2	3410-0001016-01	O-ring 1/16 x 1/8 I.D. x 1/4 O.D.		
4	2	3700-20-4092	Large Cable Retaining Tab		
5	2	3500-1258006-11	M3 x 6 mm Flat Head Socket Cap Screw Black Oxide		
6	2	3500-1258010-11	M3 x 10 mm Flat Head Socket Cap Screw Black Oxide		
7	4	3500-1057006-15	M3 x 6 socket head cap screws, Class 12.9, Blue dyed Magni-565		
			9121-210xM-0-0-0-SM		
8	1	8590-9909999-138	LED PNP Flat Pack Sensor .3 M Lg (90 Pico)		
9	2	9005-20-1743	Lock/Unlock Sensor Assembly, QC-210 (PNP)		
10	1	8590-9909999-137	RTL2 LED PNP Flat Pack Sensor .28 M (90 Pico)		
			9121-210xM-0-0-0-SP		
8	1	8590-9909999-199	LED NPN Flat Pack Sensor, 0.3 m Long, 90 deg Pico		
9	2	9005-20-1744	Lock/Unlock Sensor Assembly, QC-210 (NPN)		
10	1	8590-9909999-198	LED NPN Flat Pack Sensor, 0.28 m Long, 90 deg Pico		
	9121-210xM-0-0-0-SR				
8	1	8590-9909999-90	PNP Flat Pack Sensor 1 M Lg, Straight Pico		
9	2	9005-20-1446	Lock/Unlock Carrier Assembly, QC-50		
10	1	8590-9909999-90	PNP Flat Pack Sensor 1 M Lg, Straight Pico		

Notes:

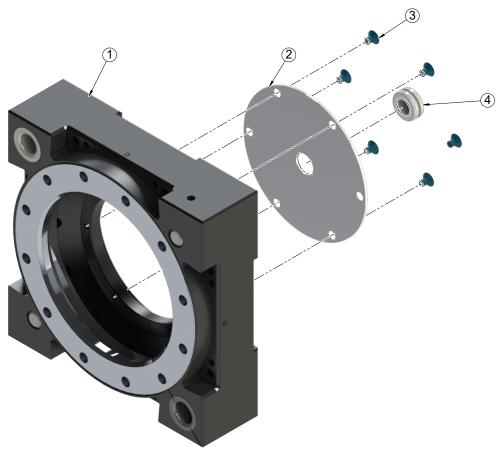
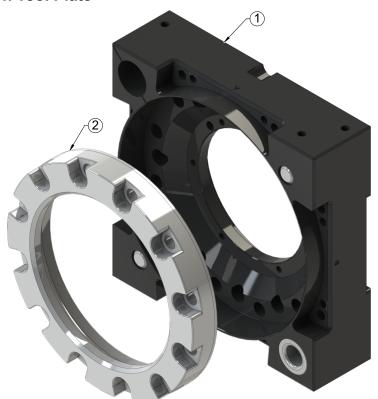

6.4 Models 9121-210xM-0-0-0-ST and 9121-210xM-0-0-0-SU

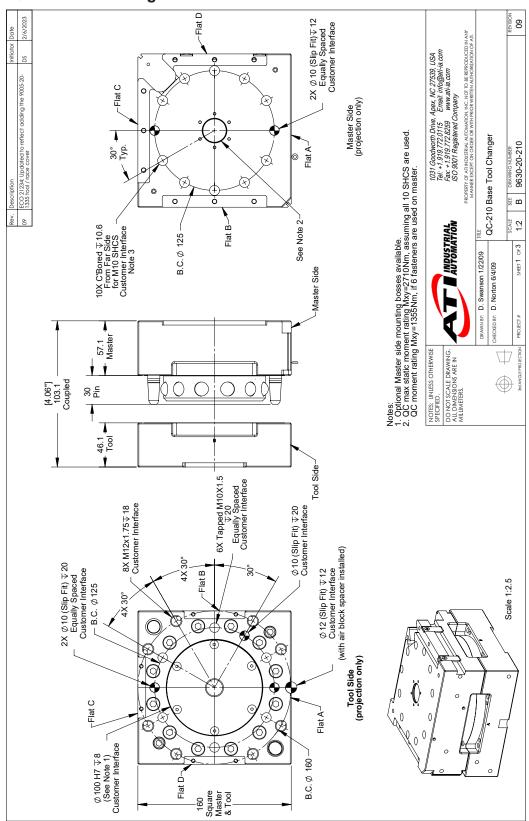
	Figure 5.19—QC-210 Master Plates				
Item No.	Qty	Part Number	Description		
1	1	9121-210xM-0-0-0-SM	QC-210 Master and PNP lock/unlock and RTL Sensing, LED Cables		
!	ı	9121-210xM-0-0-0-SP	QC-210 Master and NPN lock/unlock and RTL Sensing, LED Cables		
2	2	9005-20-2241	1/2" (2) Piece Pin Assembly		
3	2	3410-0001016-01	O-ring 1/16 x 1/8 I.D. x 1/4 O.D.		
4	2	3700-20-4092	Large Cable Retaining Tab		
5	2	3500-1258006-11	M3 x 6 mm Flat Head Socket Cap Screw Black Oxide		
6	2	3500-1258010-11	M3 x 10 mm Flat Head Socket Cap Screw Black Oxide		
7	4	3500-1057006-15	M3 x 6 socket head cap screws, Class 12.9, Blue dyed Magni-565		
	9121-210xM-0-0-0-ST				
8	2	8590-9909999-150	PNP Flat Prox 5M long (no conn) Turck Bi2-Q5.5-AP6X 5 M		
9	2	9005-20-1917	PNP Lock/Unlock Sensor Subassembly with LED		
10	2	8590-9909999-15	High-flex cable with straight screw-on connector, 5 M (16.4 ft.) long with flying leads		
	9121-210xM-0-0-0-SU				
8	2	8590-9909999-172	NPN Flat Pack Sensor, 5 Meter, Flying Leads Bi2-Q5.5-AN6X 5 M		
9	2	9005-20-1918	Lock/Unlock Sensor Assembly, (NPN)		
10	2	8590-9909999-15	High-flex cable with straight screw-on connector, 5 M (16.4 ft.) long with flying leads		


Notes:

6.5 Standard Tool Plate

Table 5.2—Standard Tool Plate						
Item No.	Qty	Part Number	Description			
1	1	9121-210CT-0-0-0	Tool with 100 mm Recess and no other options			
2	1	9005-20-1335	Tool back cover plate for QC-210 (Includes Items 3 and 4)			
3	6	3500-1262006-15A	M4x6 Flat Head Socket Cap Screw, Class 10.9, Blue dyed Magni-565, ND Microsphers Epoxy, Yellow.			
4	1	4010-0000020-01	Grommet C-30-SG-16A			

6.6 Bolt-Down Tool Plate


Table 5.3—Bolt-Down Tool Plate						
Item No.	Qty	Part Number	Description			
1	1	9121-210CWT-0-0-0	Tool with 100 mm Recess and Bolt-Down Option			
2	1	3700-20-4783	Bearing Race, QC-210 Bolt-Down			

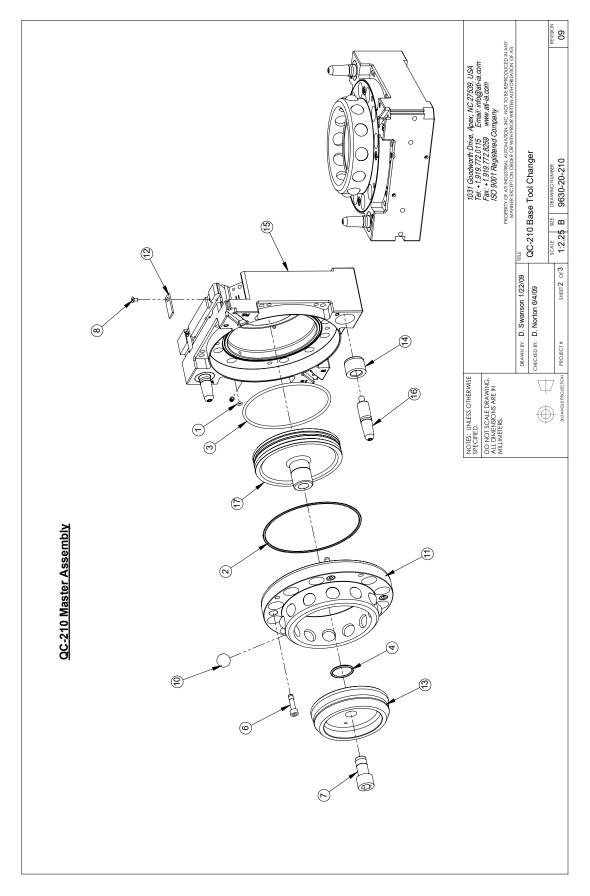
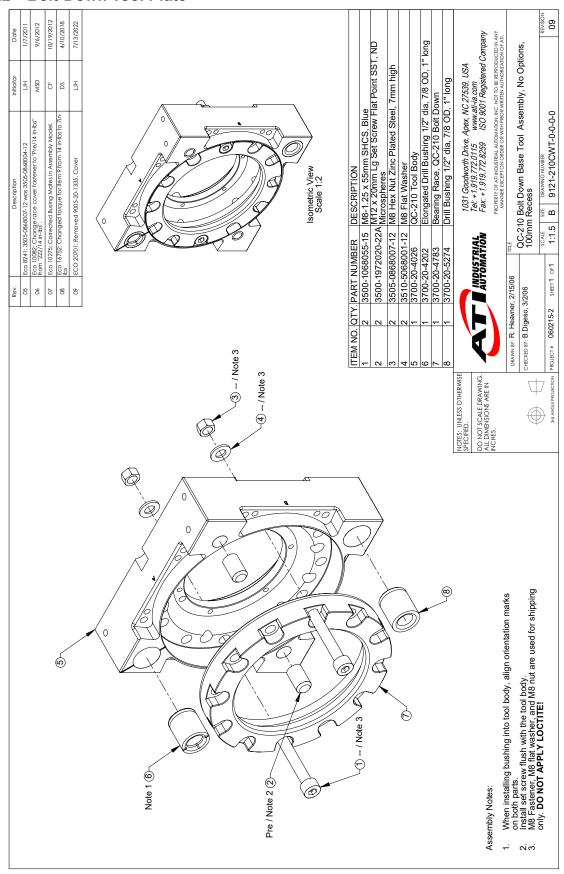

7. Specifications

Table 5.4—Master and Standard Tool Plates							
Recommended Max Payload	661 lbs (300kg)	The mass attached to the Tool Changer.					
Operating Temperature Range	-20–150°F (-30–66°C)	Optimal operating temperature range.					
Operating Pressure Range	60–100 psi (4.1–6.9 bar)	Locking mechanism supply pressure operating range. Supply to be clean, dry, and filtered to 50 micron or better.					
Coupling Force @ 80 psi	7,000 lbs (3,175 kg)	Axial holding force					
Recommended Max Moment X-Y (Mxy)	24,000 in-lbs (2,710 Nm)	Maximum recommended working load for optimum performance of the Tool Changer (assuming all 10 Socket Head Cap Screws are used) NOTE: QC moment rating Mxy=12,000 in-lbs (1355 Nm), if 6 fasteners are used on Master.					
Recommended Max Torque about Z (Mz)	20,000 in-lbs (2,260 Nm)	Maximum recommended working torque for optimum performance of the Tool Changer					
Positional Repeatability	0.0006" (0.015 mm)	Repeatability tested at rated load at one million cycles.					
Weight (coupled, no access.)	18 lbs (8.2 kg)	Master 12 lbs (5.4 kg) / Tool 6 lbs (2.7 kg)					
Max. Recommended distance between Master and Tool plate	0.08" (2 mm)	No-Touch locking technology allows the Master and Tool plates to lock with separation when coupling.					
Sensor Information, signal	L/U (Lock/Unlock)	Internal proximity sensors (2) with cable and connector for direct wiring to the control/signal module to indicate locking mechanism position.					
name	RTL (Ready-To-Lock)	Flat Pack proximity sensor with cable and connector for direct wiring to control/signal module to indicate Master and Tool mating surfaces within close proximity of each other.					
	Master plate	Meets ISO 9409-1-A125					
Mounting/Customer Interface	Tool plate	Meets ISO 9409-1-A125					
		Also supports (8) Fasteners on the 160 mm BC Pattern					
	Table 5.5—Bol	t-Down Tool Plate					
Recommended Max Moment X-Y (Mxy)	18,000 in-lbs (2,034 Nm)	NOTE: This value is lower than the standard QC-210 Tool Changer. This is the maximum recommended working load for optimum performance of the Tool Changer. (Assuming all 12 socket head cap screws are used)					
Weight (coupled, no access.)	17.5 lbs (7.9 kg)	Master 12 lbs (5.4 kg) / Tool 5.5 lbs (2.5 kg)					
Mounting/Customer Interface	Bolt-Down Tool plate	(12) Through-holes for M8 socket head cap screws on the BC 132.5 mm					

8. Drawings


8.1 QC-210 Tool Changer

8.2 Bolt-Down Tool Plate

